

ibm.com/redbooks

Implementing IBM Tivoli
Workload Scheduler V8.2
Extended Agent for
IBM Tivoli Storage Manager

Vasfi Gucer
John Ellery

Carl Buehler

Insider’s guide to Tivoli Workload
Scheduler extended agents

Ready-to-use solution for
TSM and TWS integration

TSM Extended Agent
code included

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Implementing IBM Tivoli Workload Scheduler V8.2
Extended Agent for IBM Tivoli Storage Manager

May 2005

International Technical Support Organization

SG24-6696-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (May 2005)

This edition applies to IBM Tivoli Workload Scheduler Version 8.2, IBM Tivoli Storage Manager
Version 5.3.

Note: Before using this information and the product it supports, read the information in
“Notices” on page v.

Contents

Notices . v
Trademarks . vi

Preface . vii
The team that wrote this redbook. vii
Become a published author . viii
Comments welcome. ix

Chapter 1. Introduction . 1
1.1 Tivoli Workload Scheduler overview . 2

1.1.1 Software configurations used for this redbook 2
1.1.2 Tivoli Workload Scheduler concepts and terminology 3
1.1.3 Tivoli Workload Scheduler architecture. 4
1.1.4 Extended agents . 4

1.2 Tivoli Storage Manager overview . 8
1.2.1 What are the benefits of a TSM Extended Agent? 9

1.3 Summary . 10

Chapter 2. Extended agent functions . 13
2.1 Introduction . 14
2.2 Workstation definition . 14
2.3 Method options file . 15
2.4 Access method interface . 16

2.4.1 Method command line syntax . 16
2.4.2 Task options . 17
2.4.3 Example . 18

2.5 Method response messages . 20
2.6 Execution and troubleshooting . 21

2.6.1 Executing the method . 21
2.6.2 Killing a job . 21
2.6.3 Method troubleshooting. 21

2.7 Summary . 22

Chapter 3. Case study: TSM Extended Agent . 23
3.1 Tivoli Storage Manager operations . 24
3.2 Testing the TSM Extended Agent solution . 33
3.3 Summary . 42

Chapter 4. Sample scenarios . 43

© Copyright IBM Corp. 2005. All rights reserved. iii

4.1 TSM Extended Agent solution components . 44
4.2 Tivoli Storage Manager command execution . 45
4.3 When to use the TSM Extended Agent . 46
4.4 TSM Extended Agent installation . 46
4.5 Creating job definitions . 48

4.5.1 Tivoli Storage Manager client command strings 48
4.5.2 Tivoli Storage Manager Admin command strings 49
4.5.3 Scheduling jobs using the workstation class. 50

4.6 Description of the scenarios . 54
4.6.1 Database backup . 54
4.6.2 Backup device configuration . 74
4.6.3 Backup volume history . 74
4.6.4 Clean volume history. 75
4.6.5 Expiration process. 76
4.6.6 Reclamation process. 76
4.6.7 Migration process . 77
4.6.8 Restore . 78

4.7 Summary . 78

Appendix A. TSM Extended Agent source code . 79
Parms script code. 80
TSM Extended Agent code . 80
Sample tsmxagent.opts file . 99

Appendix B. Additional material . 101
Locating the Web material . 101
Using the Web material . 101

System requirements for downloading the Web material 102
How to use the Web material . 102

Related publications . 103
IBM Redbooks . 103
Other publications . 103
How to get IBM Redbooks . 103
Help from IBM . 103

Index . 105

iv Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2005. All rights reserved. v

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
Eserver®
IBM®

MVS™
Redbooks™
Redbooks (logo) ™

RS/6000®
Tivoli®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

vi Implementing IBM Tivoli Workload Scheduler V8.2 Extended Agent for IBM Tivoli Storage Manager

Preface

IBM® Tivoli® Workload Scheduler is a strategic, multiplatform distributed
scheduling product that provides high-volume, complex scheduling capability.
Although Tivoli Workload Scheduler provides native support for many platforms
and applications, its robust scheduling capabilities can be extended to cover
additional platforms and applications by writing an extended agent.

This IBM Redbook shows how to write a Tivoli Workload Scheduler Version 8.2
extended agent to schedule jobs on IBM Tivoli Storage Manager. With the
extended agent, you can schedule on platforms and applications for which Tivoli
Workload Scheduler has no native agent, as well as integrate IBM Tivoli Storage
Manager with Tivoli Workload Scheduler. The Tivoli Workload Scheduler
scheduling facility enables you to assign dependencies among tasks scheduled
through Tivoli Storage Manager or to assign limits or priorities. By extending
Tivoli Storage Manager to schedule these Tivoli Storage Manager tasks, you can
take advantage of its advanced scheduling capabilities.

This book will be essential for those who write a Tivoli Workload Scheduler
extended agent for any platform in general, or use the extended agent provided
in this book (TSM Extended Agent) to schedule Tivoli Storage Manager tasks.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Vasfi Gucer is an IBM Certified Consultant IT Specialist working at the ITSO
Austin Center. He worked with IBM Turkey for 10 years, and has been with the
ITSO since January 1999. He has more than 12 years of experience in systems
management, networking hardware, and distributed platform software. He has
worked on various Tivoli customer projects as a Systems Architect in Turkey and
the United States. Vasfi is also a Certified Tivoli Consultant.

John Ellery is a Senior IT Consultant with IBM Business Partner Automatic IT
Corporation, http://www.AutomaticIT.com, in Austin, Texas. His areas of
expertise include Tivoli Workload Scheduler for distributed and end-to-end
environments, as well as the integration of Tivoli Workload Scheduler with other
products and platforms. He has delivered Tivoli Workload Scheduler training,
implementation, customization, and migration services at more than 50
companies during the past eight years. Before that, he worked for 13 years in the

© Copyright IBM Corp. 2005. All rights reserved. vii

http://www.AutomaticIT.com

defense industry as a software developer on military weapon systems design
projects.

Carl Buehler is an IBM Certified IT Specialist working in IBM Software Services
for Tivoli (ISST). He joined IBM in 1987 and has been a software developer,
software support engineer, and technical marketing demo developer in addition
to his current role in services. He has worked with Tivoli Workload Scheduler
since the ESP for Version 8.2 in 2003 and has extensive experience deploying
the product with customers.

Thanks to the following people for their contributions to this project:

Betsy Thaggard
International Technical Support Organization, Austin Center

We also thank the authors of the redbook Implementing TWS Extended Agent for
Tivoli Storage Manager, SG24-6030 (based on IBM Tivoli Workload Scheduler
V7.0). which the redbook updates for Tivoli Workload Scheduler V8.2 and the
JSC user interface.

Henry Daboub, Warren Gill, and Tina Lamachia
IBM USA

Denise Kikumoto
IBM Brasil

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You’ll team with IBM technical professionals,
Business Partners, and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you’ll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

http://www.redbooks.ibm.com/residencies.html

viii Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

http://www.redbooks.ibm.com

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 905
11501 Burnet Road
Austin, Texas 78758-3493

 Preface ix

http://www.redbooks.ibm.com
http://www.redbooks.ibm.com/contacts.html

x Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Chapter 1. Introduction

This redbook is designed to illustrate the implementation of a Tivoli Workload
Scheduler (TWS) extended agent. The implementation the redbook team
designed facilitates a communication between Tivoli Workload Scheduler V8.2
and Tivoli Storage Manager (TSM) V5.3 to initiate regularly scheduled tasks on
the TSM server. The TSM server-prompted scheduling facility enables us to
initiate client backups on machines defined as TSM clients in server-prompted
scheduling mode.

1

© Copyright IBM Corp. 2005. All rights reserved. 1

1.1 Tivoli Workload Scheduler overview
Tivoli Workload Scheduler is a multiplatform distributed scheduling system that
provides high-volume, complex scheduling capability. A powerful scheduling
language allows for precise coding of job streams with dependencies on other
jobs, files, virtual resources, operator prompts, and jobs in other scheduling
environments.

A Java™-based graphical user interface (GUI) known as the Job Scheduling
Console (JSC) provides the user with the option of a dialog-based graphical
interface. JSC enables a user to create and modify scheduling objects, to create
an execution plan for a batch workload, and to monitor and manage the plan
when it is executing. The more experienced user can use a command line
interface (CLI) for monitoring, scheduling, and troubleshooting.

In this book, we explore the application programming interface (API) that enables
TWS to be integrated with any application with a CLI or API. Chapter 8 of the
Tivoli Workload Scheduler 8.2 Reference Guide, SC32-1274, provides an
overview of the TWS extended agent API.

Job scheduling in TWS has two aspects: the database and the plan. The
database contains all of the definitions for scheduling objects (for example, jobs,
job streams, resources, and workstations). It also holds statistics about job and
job stream execution, as well as information about the user ID that created an
object and when an object was last modified. The plan contains all job scheduling
activity planned for a one-day period. In TWS, the plan is created every 24 hours
and consists of all jobs, job streams, dependencies, and other scheduling objects
referenced in the upcoming day. All job streams for which you have created a run
cycle are automatically scheduled and included in the plan. At the end of the day,
the jobs and job streams not successfully executed can be rolled over into the
next day’s plan.

For more information about Tivoli Workload Scheduler V8.2, refer to IBM Tivoli
Workload Scheduler Version 8.2: New Features and Best Practices, SG24-6628.

1.1.1 Software configurations used for this redbook
An IBM RS/6000® F50 workstation running AIX® V5.2 was used in the
development of this redbook. The following software was loaded onto the system:

� IBM Tivoli Workload Scheduler V8.2
� IBM Tivoli Management Framework V4.1.1
� IBM Tivoli Job Scheduling Services V1.3
� IBM Tivoli Workload Scheduler Connector V8.2
� IBM Tivoli Storage Manager V5.3 for AIX

2 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

1.1.2 Tivoli Workload Scheduler concepts and terminology
TWS uses these important concepts:

� Job streams and calendars

The job streams that are created using the JSC are central to the product’s
ability to manage batch job execution. Each job stream is scheduled to run on
a specific set of dates and times, and consists of a list of jobs that execute as
a unit (such as the weekly backup application), along with times, priorities,
and other dependencies that determine the exact order of execution.

Job streams are dated using actual dates, days of the week, or calendars. A
calendar is a set of specific dates. You can create as many calendars as
required to meet your scheduling needs. For example, you can define a
calendar named PAYDAYS containing a list of pay dates, a calendar named
MONTHEND containing a list of each last business day of the month for the
current year, and a calendar named HOLIDAYS containing a list of your
company’s holidays. At the start of each processing day, TWS automatically
selects all job streams that run on that day, and carries forward uncompleted
job streams from the previous day.

� Workstations

A workstation usually is an individual computer on which jobs and job streams
are executed. A workstation definition is required for every computer that
executes jobs in the TWS network. Workstation definitions primarily refer to
physical workstations.

However, in the case of extended agents and network agents, workstations
are logical definitions that must be hosted by a physical TWS workstation.

A TWS network has several types of workstations:

– Master domain manager

The domain manager in the topmost domain of a TWS network. It contains
the centralized database files used to document scheduling objects. It
creates the production plan at the start of each day, and performs all
logging and reporting for the network.

– Domain manager

A domain manager acts as a repeater, which enables TWS to scale to
large numbers of machines. The domain manager forwards messages
between the master domain manager and the agents.

– Backup master

A Fault-tolerant Agent capable of temporarily assuming the responsibilities
of its domain manager in a failover situation. This is enabled by marking
the workstation as Full Status and Resolve Dependencies.

 Chapter 1. Introduction 3

– Fault-tolerant Agent

A workstation capable of resolving local dependencies and launching its
jobs in the absence of a domain manager. The Fault-tolerant Agent is
initialized at the beginning of the production day with all of the scheduling
objects needed to perform the assigned workload.

– Standard agent

A workstation that launches jobs only under the direction of its domain
manager. Each job launch on the standard agent is directed in real time by
the domain manager or master.

– Extended agent

A logical workstation definition that enables you to launch and control jobs
on other systems and applications, such as PeopleSoft, Oracle
applications, SAP R/3, and MVS™ JES2 and JES3. Users can also write
extended agents, as presented in this redbook.

– Network agent

A logical workstation definition for creating dependencies between jobs
and job streams in separate TWS networks.

1.1.3 Tivoli Workload Scheduler architecture
The master domain manager contains the centralized database files that are
used to store scheduling objects. It creates the production plan at the start of
each day, distributes the plan to the Fault-tolerant Agents and domain managers
in the master domain, and logs all transactions on the TWS network.

All communications to agents are routed through the domain manager (the
management hub in a domain). The network can be managed by a mix of
agents. Fault-tolerant Agents can resolve local dependencies and launch jobs if a
network interruption causes them to lose communication with their domain
managers, because each one has a copy of the current plan (scheduling
instructions for a given day) at the beginning of every processing day.

1.1.4 Extended agents
TWS extended agents are programs that enable TWS to manipulate and get
information about objects in other application environments. Extended agents
use open scheduling APIs and protocols, and they provide an effective
mechanism for extending TWS scheduling capabilities to foreign platforms and

4 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

applications. Extended agents also allow segregation of applications at the
workstation level by providing an alternative method to the jobmanrc process.
This enables some applications to be treated differently using an alternative job
scheduling method.

Figure 1-1 shows the connection between TWS and an extended agent. The
extended agent is installed on one of the TWS hosts. TWS accepts information
from the extended agent through an interface called the access method, which is
a shell script or program that resides in the ~TWSHOME/methods directory.

Figure 1-1 Extended agent network

Figure 1-2 on page 6 explains extended agent processing. The sequence of
operations follows.

1. Batchman process on the Fault-tolerant Agent talks to the jobman
(jobman.exe on a Microsoft® Windows® system), which is owned by the TWS
install user ID on Windows.

2. Jobman invokes JOBMAN (jobmon.exe on an Windows system) process in
the context of the TWS user (maestro, for example).

3. JOBMAN talks to the access method.

4. The access method invokes a Remote Function Call (RFC).

5. The access method consults with the <method.opts> file.

6. The access method talks to the system or the application’s job.

Note: This explanation does not consider network communication issues.
Even though the extended agent must reside on a Fault-tolerant Agent, it may
interface with APIs on other hosts. This is commonly done via socket
connections or application clients.

 Chapter 1. Introduction 5

7. The access method and the job communicate with each other.

8. The method passes the information back to the TWS host through JOBMAN.

Figure 1-2 Extended agent processing

The JOBMAN process launches the access method script to perform one of
these tasks:

� Launch a job.
� Manage a job.
� Check for the existence of a file to satisfy an OPENS dependency.
� Get the status of an external job.

The syntax of the method execution is:

methodname -t task options -- taskstring

In this syntax:

� task can be:

LJ Launch a job
MJ Manage a previously launched job
CF Check availability of a file – OPENS dependency
GS Get the status of an external job

� options is the list of job properties.

� taskstring is the string to execute from the job definition.

6 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

These are the options (related to the job’s properties) that should be passed to
the access method:

� Workstation/Host/Master
� Workstation’s node definition
� Workstation’s port definition
� The current production run number
� The job’s run number
� The job’s schedule name
� The date of the schedule (in two formats)
� The user ID (logon) for the job
� The path to the output (stdlist) file for the job
� The job ID
� The job number
� The string from the SCRIPTNAME or DOCOMMAND entry in the job

definition

Example 1-1 shows a method invocation in which the job TEST is executed on the
extended agent workstation ITSO6, using the user ID itso and method name
wgetmethod.

Example 1-1 Example method invocation

wgetmethod -t LJ
-c ITSO6,ITSO7,ITSO7
-n ITSO6
-p 31111 -r 143,143 -s MACDSH91
-d 20000410,955381986 -l itso
-o /opt/maestro/stdlist/2000.04.10/O13676.1053
-j TEST,13676 -- /home/itso//batchjobs/killer

TWS currently provides these extended agents:

� UNIX® Remote Shell
� UNIX Local
� MVS (JES,OPC, CA7)
� SAP R/3 Batch
� PeopleSoft
� Oracle Applications

UNIX Remote Shell and UNIX Local extended agents come with the TWS base
package. Other extended agents are bundled into a separate package called
Tivoli Workload Scheduler for Applications.

 Chapter 1. Introduction 7

1.2 Tivoli Storage Manager overview
TSM is an end-to-end, scalable storage management solution spanning
handhelds to mainframes on more than 35 platforms. Features include:

� Centralized storage management

� Storage Area Network (SAN) features, such as LAN-free backup and tape
sharing

� Automated network incremental and subfile backup, archive, and retrieval

� Fast recovery time

� Space management file migration

� High-speed policy-based disaster recovery

� Data protection offered for most popular groupware, e-mail, databases, and
applications

TSM is the core product of the Tivoli Storage Management product set. It
provides a solution for distributed data and storage management in an enterprise
network environment. It is the next generation of the product originally released
by IBM as ADSTAR Distributed Storage Manager (ADSM).

TSM and its complementary products provide these base functions:

� Data protection, including:

– Operational backup and restoration of data: The backup process creates a
copy of the data to protect against the operational loss or destruction of file
or application data. The customer defines how often to back up
(frequency) and how many numbers of copies (versions) to hold.

The restore process places the backup copy of the data into a
customer-designated system or workstation.

– Disaster recovery: All activities to organize, manage, and automate the
recovery process from a major loss of IT infrastructure and data across the
enterprise. This includes processes to move data off-site into a secure
vault location, to rebuild IT infrastructure, and to reload data successfully
in an acceptable time frame.

Note: In addition to the TWS-provided extended agents, you can write your
own extended agents for platforms or applications that are not supported by
TWS by using the open API documented in the IBM Tivoli Workload Scheduler
8.2 Reference Guide, SC32-1274.

8 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

� Storage resource management, including:

– Vital record retention, archive, and retrieval: The archive process creates a
copy of a file or a set of files representing an endpoint of a process for
long-term storage. Files can remain on the local storage media or can be
deleted. The customer controls the retention period (how long an archive
copy is to be retained).

The retrieval process locates the copies within the archival storage and
places them into a customer-designated system or workstation.

– Hierarchical space management: This process provides the automatic and
transparent movement of operational data from the user system disk
space to a central storage repository. If the user accesses this data, it is
dynamically and transparently restored to client storage.

1.2.1 What are the benefits of a TSM Extended Agent?
TSM administrators must perform several types of operations regularly each day.
TSM contains a built-in scheduling facility, which provides a simple mechanism to
automate routine tasks. By extending TWS to schedule these tasks you can:

� Create job dependencies.

� Set limits.

� Set resources.

� Set workstation classes (so that a single job definition can be used by a list of
workstations).

This scheduling facility does not provide the ability to assign dependencies
among scheduled tasks or to assign limits or priorities. By extending TWS to
schedule these tasks, you can take advantage of its advanced scheduling
capabilities.

The following common TSM tasks were implemented for this example:

� Database backup (BACKUP DB)
� Volume history backup (BACKUP VOLHISTORY)
� Device configuration backup (BACKUP DEVCONFIG)
� Delete volume history (DELETE VOLHISTORY)
� Inventory expiration (EXPIRE INVENTORY)
� Client backup

All TSM tasks executed by the TSM Extended Agent (Tivoli Storage
Managerxagent), use the Tivoli Storage Manager Administrative Client Interface
(dsmadmc). The user ID used to log on to the interface is fetched from the Tivoli
Storage ManagerAdmin variable in the Tivoli Storage Managerxagent.opts file in
the Tivoli Workload Scheduler methods directory. The password is retrieved from

 Chapter 1. Introduction 9

the Tivoli Workload Scheduler parameter object with the same name as the user
ID, so different passwords can be set for different user IDs. In turn, TWS
extended agent can be deployed on multiple TSM servers with unique user IDs.

As shown in Figure 1-3, extended agents are used to extend TWS job scheduling
functions to other systems and applications.

Figure 1-3 Extended agent

An extended agent is defined as a workstation that has a host and an access
method. The host is any other workstation, except another extended agent. The
access method is a Tivoli-supplied or user-supplied script or program that the
host executes whenever the extended agent is referenced in the production plan.
For example, to launch a job on an extended agent, the host executes the access
method, passing it job details as command line options. The access method
communicates with the external system or application to launch the job and
return the status of the job.

Each extended agent must have a logical workstation definition. This logical
workstation must be hosted by a TWS physical workstation (a master, domain
manager, or Fault-tolerant Agent workstation). The extended agent workstation
definition references the name of the access method and the host workstation.
When jobs are launched on the extended agent workstation, the access method
is called and passes the job information to the external system. For an example
of defining an extended agent workstation, see the IBM Tivoli Workload
Scheduler 8.2 Planning and Installation Guide, SC32-1273.

1.3 Summary
Tivoli Workload Scheduler is a multiplatform distributed scheduling program that
provides high-volume, complex scheduling capability for many systems and
applications. Master domain manager, domain manager, backup master,

Host

TWS network

Extended agent External
system or
application

10 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Fault-tolerant Agent and standard agent are various types of workstations in a
Tivoli Workload Scheduler network.

You can extend the number of platforms and applications that TWS supports by
writing TWS extended agents, which enable TWS to manipulate and get
information about objects in other scheduling environments.

Tivoli Storage Manager is a scalable storage management solution spanning
handhelds to mainframes on more than 35 platforms. Centralized storage
management, LAN-free backup and tape sharing, and automated network
incremental and subfile backup, archive, and retrieval are some of the important
functions that TSM provides.

 Chapter 1. Introduction 11

12 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Chapter 2. Extended agent functions

This chapter describes the functions of the Tivoli Workload Scheduler extended
agent method, the access method interface, and the communications protocols
between jobs running within an access method.

This chapter has the following sections:

� “Introduction” on page 14

� “Workstation definition” on page 14

� “Method options file” on page 15

� “Access method interface” on page 16

� “Method response messages” on page 20

� “Execution and troubleshooting” on page 21

� “Summary” on page 22

2

© Copyright IBM Corp. 2005. All rights reserved. 13

2.1 Introduction
The extended agent is defined as a workstation that has a host and an access
method. The host is any other TWS workstation, except another extended agent.
The access method is a Tivoli-supplied or user-supplied script or program that
the host executes whenever the extended agent is referenced in the production
plan.

For example, to launch a job on an extended agent, the host executes the access
method, passing it job details as command line options. The access method
communicates with the external system or application to launch the job and
return the status of the job.

2.2 Workstation definition
Each extended agent must have a logical workstation definition. This logical
workstation must be hosted by a TWS physical workstation, either a master,
domain manager, or Fault-tolerant Agent workstation. The extended agent
workstation definition references the name of the access method and the host
workstation. Workstation definitions are created using the command-line
Composer interface, or Job Scheduling Console (JSC). When jobs are launched
on the extended agent workstation, the access method is called and passes the
job information to the external system.

Suppose, for example, that you have a TWS network comprised of three
workstations: a master workstation (called Copernicus), a Fault-tolerant Agent
workstation (Kepler), and an extended agent workstation (Galileo). This is an
example of the extended agent workstation definition:

CPUNAME galileo
OS OTHER
NODE focus
TCPADDR 1609
FOR MAESTRO

HOST kepler
ACCESS nuncius

END

In this case, Galileo is the extended agent workstation, focus is the node name,
1609 is the TCP port, Kepler is the host, and nuncius is the name of the access
method. An executable file (script or program) named nuncius must reside in the
/methods subdirectory of the TWS installation and must be executable. For
extended agents only, the node and tcpaddr definitions are left to the method
developer to define. In other words, depending on the nature of the access
method, node might have different uses.

14 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

2.3 Method options file
By default, when executing an extended agent job, TWS tries to execute the
method file as the logon defined for each job to be run by the method. When
executing the method script to check for an OPENS dependency (using the
check file, or CF, task) TWS executes the method as root by default. You can
change this behavior by using a method options file to specify special login
information and other options for your access method. For example, you may
wish to use the logon field of your agent’s job definitions to represent a logon to a
foreign system that does not exist on the extended agent’s host.

TWS reads the file, if it exists, before executing a method. If the file is modified
after TWS is started, the changes take effect when it is stopped and restarted.
The file can contain TWS options and any other method information you wish to
include. The options recognized by TWS are:

LJuser=username
CFuser=username

LJuser=username specifies the logon to use for the launch job (LJ) and manage
job (MJ) tasks. The default is the logon from the job definition.

CFuser=username specifies the logon to use for the CF task. The default is root for
UNIX, and for Windows it is the user name of the account in which TWS was
installed.

Note: If the extended agent’s host is a Windows computer, these users must
be defined as TWS user objects. The options file must have the same path
name as its access method, with an .opts file extension. For example, the
Windows path name of an options file for a method named nuncius is
WShome\methods\nuncius.opts.

 Chapter 2. Extended agent functions 15

2.4 Access method interface
The interface between TWS and an access method consists of information
passed to the method on the command line, and messages returned to TWS in
stdout.

2.4.1 Method command line syntax
The TWS host runs an access method using the following command line syntax:

methodname -t task options -- taskstring

methodname specifies the file name of the access method. In our example, this is
nuncius. All access methods must be stored in the WShome/methods directory.

-t task specifies the task to be performed, where task is one of the options
listed in Table 2-1.

Table 2-1 Task types

options specifies the options associated with the task. See 2.4.2, “Task options”
on page 17 for more information.

taskstring is a string of up to 255 characters associated with the task, as
explained in the next section, “Task options.”

Task Description

LJ Launches a job. The access method is called with this task option when
TWS launches a job. TWS will expect the access method to continue
running until the job it executes is complete.

MJ Manages a previously launched job. Use this option to synchronize job(s) if
a prior LJ task terminated unexpectedly. The MJ method is called for under
only a few circumstances. For example, TWS or its batchman process
terminates (an operator issues a Conman STOP command to the agent’s
host) while an extended agent job is running. When the TWS processing is
restarted, it will execute the extended agent’s access method for each job
that was previously running, passing it the MJ task and the same
arguments initially sent to the job. The access method should use the MJ
task to determine the state of the previously running job and report that
state back to TWS.

CF Checks the availability of a file. Use this option to check file OPENS
dependencies. Using the Galileo workstation example, if a schedule
contained the dependency (OPENS GALILEO#/this/is/my/file) TWS would
call the access method for Galileo and pass it the CF task and the path
(/this/is/my/file).

16 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

2.4.2 Task options
The task options are listed in Table 2-2. An “x” means the option is valid for the
task.

Table 2-2 Task options

-c xagent,host,master Specifies the TWS names of the extended agent, the
host, and the master domain manager, separated by
commas.

-n nodename Specifies the node name of the computer associated
with the extended agent, if any. This is defined in the
extended agent’s workstation definition node field.

-p portnumber Specifies the TCP port number associated with the
extended agent, if any. This is defined in the extended
agent’s workstation definition TCP Address field.

-r currentrun,specificrun Specifies the current run number of TWS and the
specific run number associated with the job, separated
by a comma. The current and specific run numbers
might be different if the job is carried forward from an
earlier run.

-s jstream Specifies the name of the job’s job stream.

-d scheddate,epoch Specifies the schedule date (yymmdd) and the epoch
equivalent, separated by a comma.

-l user Specifies the job’s user name. This is defined in the job
definition Logon field.

-o stdlist Specifies the full path name of the job’s standard list
file. Any output from the job must be written to this file.

-j jobname,id Specifies the job’s name and the unique identifier
assigned by TWS, separated by a comma. The name
is defined in the job definition Job Name field.

-q qualifier Specifies the qualifier to be used in a test command
issued by the method against the file.

Task Options Task string

-t -c -n -p -r -s -d -l -o -j -q

LJ x x x x x x x x x ljstring

MJ x x x x x x x x x mjstring

CF x x x x cfstring

 Chapter 2. Extended agent functions 17

-- ljstring Used with the LJ task. The string from the script file or
command field of the job definition.

-- mjstring Used with the MJ task. The information provided to
TWS by the method in a %CJ response to an LJ task.
Usually, this identifies the job that was launched. For
example, a UNIX method can provide the process
identification (PID) of the job it launched, which TWS
sends as part of an MJ task.

-- cfstring Used with the CF task. For a file OPENS dependency,
the string from the Opens Files field of the job stream
definition.

2.4.3 Example
Using our previous workstation definition and the options we just listed, here is
an example of how your access method would be called from TWS. In this
example, a job defined as tsmjob1 runs the command ADMIN VHBACKUP
/opt/tsm/dat/fa20001020 in the job stream (schedule) DAILYBAK:

/opt/maestro/methods/nuncius -t LJ -c GALILEO,KEPLER,COPERNICUS -n focus -p
1609 -r 109,109 -s DAILYBAK -d 20001207,976147200 -l root -o
/opt/maestro/stdlist/2000.12.07/O9041.1414 -j TSMJOB1,9041-- ADMIN VHBACKUP
/opt/tsm/dat/fa20001020

Examining the command structure from the example:

/opt/maestro/methods/nuncius
This is the directory to the access method script.

-t LJ The task option LJ was sent, indicating that a job is being run.

-c GALILEO,KEPLER,COPERNICUS
This option shows that Galileo is the extended agent’s name,
Kepler is the agent’s host’s name, and Copernicus is the TWS
master’s name.

-n focus Focus is the node name of the extended agent. This name
comes directly from the workstation definition for Galileo.

-p 1609 The number 1609 is the tcpaddr port definition from the
workstation definition for Galileo.

-r 109,109 The current run number (Tivoli Workload Scheduler production
day) is 109, as is the job’s run number. If, for example, this option
was -r 110,109, it would signify that the job stream (schedule)
from which this job is running has been carried forward from a
previous day.

18 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

-s DAILYBAK The job stream (schedule) name from which this job is running is
DAILYBAK.

-d 20001207,976147200
The current scheduling production run date is December 7,
2000. Remember that the scheduling production run date may
be different than the actual calendar run date.

-l root The job run by this method should log on to the system as root.
This information comes from the job definition.

-o /opt/maestro/stdlist/2000.12.07/O9041.1414
All output (stdout and stderr) is being redirected to the file
/opt/maestro/stdlist/2000.12.07/O9041.1414 on the host
workstation.

-j TSMJOB1,9041
The name of the job being run is TSMJOB1, and its job number
(as seen in the Conman SHOWJOBS command) is 9041. On
UNIX systems only, 9041 is also the parent process ID for this
job.

The rest of the arguments after a double hyphen are directly from the
SCRIPTNAME or DOCOMMAND entry in the TWS job definition. In this case,
the application understands the command ADMIN VHBACKUP and processes
the command appropriately:

-- ADMIN VHBACKUP /opt/tsm/dat/fa20001020

Typically, the access method ignores any options after the double hyphen and
passes them directly to the target application. This is, of course, up to the
method’s author to determine.

Example 2-1 shows the job’s status in the Console Manager upon execution.

Example 2-1 Job status

Est) (Est)
CPU Schedule Job State Pr Start Elapse Dependencies

GALILEO #DAILYBAK ******** SUCC 10 14:14 01:10
 TSMJOB1 SUCC 10 14:14 01:10 #J9041
%

 Chapter 2. Extended agent functions 19

2.5 Method response messages
Methods returns information to TWS in messages written to stdout. Each line
starting with a percent sign (%) and ending with a new line is interpreted as a
message. The messages have the following format:

%CJ state [mjstring]
%JS [cputime]
%UT [errormessage]

The elements of this format are:

CJ Changes the job state.

state The state to which the job is changed. All TWS job states
are valid except hold and ready.

mjstring A string of up to 255 characters that TWS will include in
any MJ task associated with the job.

JS [cputime] Indicates successful completion of a job and provides its
elapsed run time in seconds. For the job to be considered
successful, this message must be presented (usually with
an echo statement) before the method ends.

UT [errormessage] Indicates that the requested task is not supported by the
method. Displays a string of up to 255 characters that
TWS will include in its error message (stored in the Tivoli
Workload Scheduler standard list file; typically this file is
~maestro/stdlist/yyyy.mm.dd/MAESTRO).

You can use these messages within your access method to relay information to
the Tivoli Workload Scheduler Console Manager. By changing the status of your
job, operators can pay special attention to your jobs by filtering their console
windows by job status. For example, you might have jobs toggle between wait
and exec states by issuing an echo %CJ WAIT or echo %CJ EXEC command while
the job connects to the application and executes its function.

20 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

2.6 Execution and troubleshooting
The extended agent’s access method is executed by the TWS jobman process,
much as a standard job is launched through jobmanrc.

2.6.1 Executing the method
Before the method is launched, TWS establishes an execution environment for
the method.

The LJuser parameter is read from the method options file to determine the user
account with which to run the method. If the parameter is not present or the
options file does not exist, the user account specified in the Logon field of the
job’s definition is used. In addition, the following environment variables are set:

HOME User’s home directory
LOGNAME Login user’s name (from the job definition)
PATH For UNIX, /bin:/usr/bin; for Windows, %SYSTEM%\SYSTEM32
TZ Time zone

2.6.2 Killing a job
While an access method is running an MJ or LJ task, it should trap a SIGTERM
signal (signal 15). This is the signal sent to the job when an operator issues a kill
command from the user interface. When a kill signal is caught, the method
should attempt to stop or kill the job and exit without writing a %JS message.

2.6.3 Method troubleshooting
If the method cannot be executed, its state is set to fail. All output messages
from an access method, except those that start with a percent sign (%), are
written to the job’s standard list (stdlist) file. For GS and CF tasks that are not
associated with TWS jobs, messages are written to the TWS standard list file.
For information regarding a problem of any kind, check these files.

For extended agents, error, warning, and information messages are written to the
TWS stdlist file.

� A successful job launch generates the following message:

Launched job jobname for wkstation ,#J jobid for user username

� Failure to launch a job generates the following message:

Error launching jobname for wkstation :errortext

 Chapter 2. Extended agent functions 21

� Failure of a CF task generates the following message:

Error invoking methodname for wkstation :errortext

� Failure of an MJ task generates the following message:

Error managing jobname for wkstation using methodname :errortext

� When a method sends a message to Jobman that is not recognized, the
following message is generated:

Error:message invalid for jobname ,#j jobnumber for wkstation using
methodname ."first 64 characters of the offending message"

2.7 Summary
In this chapter we covered the functions of the TWS extended agent method, the
Access Method Interface, and the communications protocols between jobs
running within an access method.

The main functions used in an extended agent method are:

LJ Launch job
MJ Manage job
CF Check file dependency

The extended agent’s access method is executed by the jobman process, much
as a standard job is launched through jobmanrc.

22 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Chapter 3. Case study: TSM Extended
Agent

This chapter includes scripts that are useful to Tivoli Workload Scheduler and
Tivoli Storage Manager administrators.

These scripts are about TSM processes such as backup, storage pools,
migration, reclamation, volume history, and device configuration. TSM
administrators generally schedule these processes, so it makes sense to write a
Tivoli Storage Manager Extended Agent for Tivoli Workload Scheduler (TSM
Extended Agent) that incorporates these functions. Using the TSM Extended
Agent, administrators can schedule these TSM operations through TWS.

This chapter has the following sections:

� “Tivoli Storage Manager operations” on page 24

� “Testing the TSM Extended Agent solution” on page 33

� “Summary” on page 42

3

© Copyright IBM Corp. 2005. All rights reserved. 23

3.1 Tivoli Storage Manager operations
We start by providing some background information about these operations. The
following sections should be especially useful if you are not familiar with TSM
scheduling operations.

� Back up database

Use this command to back up a TSM database to sequential access volumes
(Figure 3-1). To determine how much additional storage space a backup will
require, use the QUERY DB command. This command displays the database
pages (in megabytes) that have changed since the last backup.

The syntax of the command is:

backup db devclass=dbbackup type=full scratch=yes wait=yes,

In this syntax:

backupdb The name of the devclass defined on the TSM server.

type Specifies that you can run the full backup on the TSM
database. This parameter is optional. Possible options
are: incremental, full, and dbsnapshot. The default is
incremental.

scratch To take the device that is scratch. The default value is
yes. Using scratch=no means that the scratch volume
cannot be used. This parameter is optional.

wait Specifies whether to wait for the server to complete
processing this command in the foreground. The
default is no. Possible options are: yes (the server
processes the command in foreground) and no (the
server processes the command in background).

If a backup completes unsuccessfully, you can verify and restart it.

You can find more details about the syntax of the commands in the IBM Tivoli
Storage Manager for AIX Administrator's Reference V5.3, GC32-0769.

Figure 3-1 Requesting a backup

Backup process

TSM serverUser

Requests a
backup

Library

24 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

� Back up storage pool

Use this to back up primary storage pool files to a copy storage pool.

If a file already exists in the copy storage pool, the file is not backed up unless
the copy is marked as damaged. However, a new copy is not created if the file
in the primary storage pool is also marked as damaged. In a random-access
storage pool, neither cached copies of migrated files nor damaged files are
backed up.

If migration for a storage pool starts during a storage pool backup, some files
may be migrated before they are backed up. You may want to back up storage
pools that are higher in the migration hierarchy before backing up storage
pools that are lower. For example, when performing a storage pool backup to
copy the contents of a storage pool off-site, if the process is not done
according to the existing storage pool hierarchy, some files may not be copied
to the copy storage pool. This could be critical for disaster recovery purposes.
When performing a storage pool backup on multiple storage pools, the
primary storage pool should be completed before the backup process on the
next storage pool.

The syntax of the command is:

backup stgpool spacemgtpool copypool

In this syntax:

spacemgtpool The primary backup that you want to back up.

copypool The copy storage pool defined on the TSM server.

� Reclamation

Specifies when the server reclaims a volume, based on the percentage of
reclaimable space on a volume (Figure 3-2 on page 26). Reclamation makes
the fragmented space on volumes usable again by moving any remaining
active files from one volume to another volume, thus making the original
volume available for reuse. You can specify an integer from 1 to 100. The
value 100 means that reclamation is not performed.

If you change the value from the default of 100, specify a value of 50 percent
or greater so that files stored on two volumes can be combined into a single
output volume.

To move data from the reclaim storage pool back to the original storage pool,
use the storage pool hierarchy. Specify the original storage pool as the next
storage pool for the reclaim storage pool.

The syntax of the command is:

update stgpool copypool reclaim=50

In this syntax, reclaim is the percentage of the reclamation in copypool.

 Chapter 3. Case study: TSM Extended Agent 25

Figure 3-2 Reclamation in the tape device

� Migration

You can use a primary storage pool as the destination for backup files, archive
files, or files migrated from client nodes (Example 3-1).

Example 3-1 Migration command

define stgpool somepool dbbackup pooltype=primary access=readwrite
maxsize=nolimt highmigh=90 lowmig=70 migprocess=1 collocate=no migcontinue=yes
reusedelay=0 migdelay=0

In this syntax:

somepool The pool name defined on the TSM server.

dbbackup The device class name defined on the TSM server.

pooltype Specifies that you want to define a primary storage
pool. The default value is primary.

access Specifies how client nodes and server processes
(such as migration and reclamation) can access files in
the storage pool. The default value is readwrite, but
you can also define as readonly and unavailable.

100% used100% used

Reclamation

100% used 50% used 40% used

100% used 90% used Free tape device

Tape devices before reclamation process

After reclamation process

26 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

maxsize Specifies the maximum size for a physical file size that
the server can store in the storage pool during a
session with a client. The default value is nolimit.

highmig Specifies that the server starts migration for this
storage pool when the amount of data in the pool
reaches this percentage of the pool’s estimated
capacity. You can specify an integer from zero to 100.
The default value is 90. When the storage pool
exceeds the high migration threshold, the server can
start migration of files by node, to the next storage
pool, as defined with the NEXTSTGPOOL parameter.
You can specify highmig=100 to prevent migration for
this storage pool.

lowmig Specifies that the server stops migration for this
storage pool when the amount of data in the pool
reaches this percentage of the pool’s estimated
capacity. You can specify an integer from zero to 99.
The default value is 70. When the storage pool
reaches the low migration threshold, the server does
not start migration of another node’s files. Because all
file spaces that belong to a node are migrated
together, the occupancy of the storage pool can fall
below the value you specified for this parameter. You
can set lowmig=0 to permit migration to empty the
storage pool.

migprocess Specifies the number of processes the server uses for
migrating files from this storage pool. You can specify
an integer from 1 to 999. The default value is 1. During
the migration the server runs this number of processes
in parallel to provide the potential for improved
migration rates.

migdelay Specifies the minimum number of days a file must
remain in a storage pool before the file becomes
eligible for migration. The server counts the number of
days from the day the file was stored in the storage
pool or retrieved by a client, whichever is more recent.
The default is zero, which means you do not want to
delay migration.

migcontinue Specifies whether you allow the server to migrate files
that do not satisfy the migration delay time. The default
value is yes. Because you can require that files remain
in the storage pool for a minimum number of days, the
server may migrate all eligible files to the next storage

 Chapter 3. Case study: TSM Extended Agent 27

pool yet not meet the low migration threshold. With this
parameter, you can specify whether the server is
allowed to continue the migration process by migrating
the files that do not satisfy the migration delay time.

Figure 3-3 Migration process

� Back up device configuration

Use this command to back up the following information in one or more files:

– Device class definitions

– Library definitions

– Drive definitions

To restore the TSM database, the device configurations must be available.
You can use the devconfig server option to specify one or more files for
storing device configuration information. TSM updates the files whenever a
device class, library, or drive is defined, updated, or deleted.

Migration process

Client Client
TSM server

Disk

Library

Backup

Disk

28 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

The syntax of the command is:

backup devconfig filenames=device

In this syntax, device is the directory into which devconfig information will be
backed up.

Figure 3-4 Device configuration

� Back up volume history

Use this command to back up sequential volume history information to one or
more files. You can use volume history information when you reload the
database and audit affected storage pool volumes. If you cannot start the
server, you can use the volume history file to query the database about these
volumes. The volume history includes information about the following types of
volumes:

– Database backup volumes

– Database dump volumes

– Export volumes

– The following sequential access storage pool volumes:

• Volumes added to storage pools

• Volumes reused through reclamation or move-data operations

Device class definitions

Drive definitions

Library definitions

DevicesDevices

 Chapter 3. Case study: TSM Extended Agent 29

• Volumes removed by using the delete volume command or during
reclamation of scratch volumes

The syntax of the command is:

backup volhistory filenames=volhist

volhist is the name of the filename that will contain information about the
volhistory backup.

� Delete volume history

Use this command to delete volume history file records that are no longer
needed (for example, records for obsolete database backup volumes).

When you delete records for volumes that are not in storage pools (such as
database backup or export volumes), the volumes return to Source Manager,
which acquires them as scratch volumes. Scratch volumes of device-type files
are deleted. When you delete the records for storage pools, volumes remain
in the TSM database. When you delete records for recovery-plan file objects
from a source server, the objects on the target server are marked for deletion.

The syntax of the command is:

delete volhistory type=rpfile todate=11/31/02

type Specifies the type of records, which also meet the date and
their criteria, to delete from the volume history file. rpfile is
for deleting only records that contain information about full
and incremental database backup volumes and recovery
plan file volumes.

todate Specifies the date to use to select sequential volume history
information to be deleted. TSM deletes only those records
with a date on or before the date you specify.

For more details, refer to the IBM Tivoli Storage Manager for AIX
Administrator's Reference V5.3, GC32-0769.

� Expire inventory

Use this command to manually start inventory expiration processing. This
inventory expiration process removes the client backup and archive file copies
from server storage based on the policy specified in the backup and archive
copy groups of the management classes to which the files are bound. The
inventory expiration process that runs during server initialization does not
remove these virtual volumes.

Only one expiration process is allowed at any time. If an expiration process is
running you can not start another process.

The syntax of the command is:

expire inventory quiet=no wait=no skipdirs=no duration=40

30 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

In this syntax:

quiet Specifies whether the server suppresses detailed messages
about the policy changes during the expiration processing.
This parameter is optional. The default value is no, which
specifies that the server sends detailed informational
messages. You can also set the value to yes, which specifies
that the server sends only summary messages.

wait Specifies whether to wait for the server to complete
processing this command in the foreground. Possible values
are no, which specifies that the server processes this
command in the background, and yes, which specifies that
the server processes this command in the foreground. This
parameter is optional.

skipdirs Specifies whether the server skips directory type during the
expiration processing. Possible values are: no, which
specifies that the server will expire files and directories
based on the appropriate policy criteria, and yes, which
specifies that the server will skip directory type objects
during expiration processing even if the directories are
eligible for expiration.

duration Specifies the maximum number of minutes for the expiration
process to run. The process stops when the specified
number of minutes have passed or when all eligible expired
objects are deleted, whichever comes first. You can specify a
number from 1 to 999,999 (optional).

� Restore database

To restore a database or volume to its most current state, the log mode must
have been set to roll forward continuously from the time that the last backup
series was created.

If the log mode is set to roll forward after a point-in-time database restoration,
a database backup starts when the server is brought up for the first time. This
can cause loss of data: A tape can have current data on it, but because of the
point-in-time restoration, it can be marked as scratch. When the server starts
for the first time, TSM may use this tape to write the database backup, thus
destroying the original data on this tape.

You can restore a database if the following are true:

– The log mode was set to roll-forward continuously from the time the last
backup series was created.

– An intact recovery log is available.

– An intact volume history file is available.

 Chapter 3. Case study: TSM Extended Agent 31

TSM requests volume mounts to load the most recent backup series, then
uses the recovery log to update the databases to its most current state.

If the volume history file is unavailable, you can use one or more dsmc
restore db commands to restore the database to a specific point in time. For
example, to load a full backup and one or more incremental backups, issue a
dsmc restore db command for the full backup and an additional dsmc restore
db command for each incremental backup. When you use multiple dsmc
restore db commands, specify commit=no for each command except the last
one. For the last command, specify commit=yes. The database remains in an
inconsistent and unusable state until you issue a dsmc restore db command
with a commit=yes.

The syntax of the command is:

dsmc restore db devclass=device_class_name volumename=volume_name
commit=no

In this syntax:

devclass Specifies the name of the sequential access device class to
use. The device class must be defined in a device
configuration file.

volumename Specifies the backup volume to use to restore the database.
Possible values are:

volume_name Specifies the names of the volumes. To specify
multiple volumes, separate the names with
commas without intervening spaces.

file:file_name Specifies the name of a file that contains a list of
the volumes.

commit Specifies whether this is the last restore command needed to
restore the database. The default value is no (specifies that
you will issue one or more additional dsmc restore db
commands), but you can also define the value yes (specifies
that this is the last restore command to restore the
database). This parameter is optional.

32 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

3.2 Testing the TSM Extended Agent solution
After you analyze all of the scripts, you can also test the environment and
commands in the TWS structure.

Decide which system will host your master (the system on which the TWS
database resides, as well as the system on which all updates are received) and
install the TWS software on your system. Follow the installation steps in the IBM
Tivoli Workload Scheduler 8.2 Planning and Installation Guide, SC32-1273 and
IBM Tivoli Workload Scheduler Job Scheduling Console 1.3 User’s Guide,
SC32-1257.

To access the TWS database, start the Job Scheduling Console (JSC). Log in as
user twsuser (default TWS user), or the name of the TWSuser you have chosen.

Figure 3-5 on page 34 shows the welcome window, which is presented when
logging on to the JSC as a first-time user. You may either select the radio button
for Dismiss this window and work on my own and click OK, or simply click
Cancel to dismiss this window. If you do not want to see this window the next
time you log on to the JSC, select Don’t show this window again, select
Dismiss this window and work on my own, and click OK.

Note: Appendix A, “TSM Extended Agent source code” on page 79 includes
the source code for the TSM Extended Agent script. You can also download it
from the ITSO Web site. For downloading instructions, refer to Appendix B,
“Additional material” on page 101. Note that the TSM Extended Agent script
runs in Korn Shell environment. We have tested the script on AIX, but it should
run with little or no modification on any platform that supports Korn Shell.

 Chapter 3. Case study: TSM Extended Agent 33

Figure 3-5 JSC welcome window

The JSC main window (Figure 3-6 on page 35) presents the Action list pane and
the Work with engines pane, which provide users with access to the TWS
databases and the current plan.

If you close the Action list pane, you can recall it by moving your cursor over the
folder tab on the far left side of the JSC and pushing the pin in the upper-right
corner of its pane, or by pressing Ctrl+T, or by selecting View → Show →
Portfolio from the JSC menu bar. To re-open the Work with engines pane, click
the button on the tool bar of the JSC main window. The functionality of these
windows is explained later in this document.

34 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Figure 3-6 JSC main window

The Action List pane enables you to create new objects such as workstations,
workstation classes, domains, calendars, jobs, and users. Figure 3-7 shows an
open New Workstation list in the Action List pane, which is expanded to show all
available scheduling engines. In this example, only one scheduling engine is
shown with the default instance name of Maestro.

To create a new object, open the associated list entry and click on the scheduling
engine name associated with the destination TWS database.

Figure 3-7 Action List pane

 Chapter 3. Case study: TSM Extended Agent 35

The JSC can access the databases only from the master or wherever the mozart
directory is accessible via a TWS Connector or the composer CLI. We do not
recommend mounting or mapping the mozart directory, as the TWS database
should not be accessible to all users. The JSC through the TWS Connector
reads the mozart directory and the corresponding file pertaining to your choice.
At this point you can add, modify, copy, and delete data. Make sure you have the
proper security access when performing such operations.

Open the Default Database Lists group to see a list for each TWS object type
(Figure 3-8). Double-click any of the lists, and the JSC opens an Object List View
pane for all objects associated with that list type. You can also create your own
groups and filtered lists, which can be used to control the objects presented in
your Object List View pane.

Figure 3-8 Database lists

Double-click an Object List View under Default Database Lists to display the
Object List View for the associated object type. You can click the in the
upper-right corner of the Object List View or select Console → Detach Task
from the JSC menu bar to detach the pane as a separate window. Figure 3-9 on
page 37 shows a detached All Job Definitions list.

36 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Figure 3-9 List of jobs defined on your server

You can perform modifications of job properties, deletions, and replication
(Create another choice) on an existing job by right-clicking the desired job and
selecting the appropriate menu item. The window in Figure 3-10 appears if you
select the Properties menu option. For assistance with this window, click the
question mark in the upper-right corner of the window and follow the instructions
to make changes or review the job definition.

Figure 3-10 Changing job properties: General tab

 Chapter 3. Case study: TSM Extended Agent 37

The initial properties presented in the job properties window are associated with
the General tab. You may also select the Task tab for additional job properties.
Figure 3-11 is an example of the display associated with the Task tab.

Figure 3-11 Changing job properties: Task tab

As shown, adding a new job or modifying an existing job should be relatively
easy. We now offer a few explanations for you to take full advantage of TWS.

With TSM and TWS, you can take advantage of several options to ensure that
your TSM jobs are successful. Recovery Options can be used to ensure that a
backup is successfully executed every time. By choosing Continue or Rerun, the
Recovery Job or Recovery Prompt can be used to ensure that backups are
always successful. You can key in the recovery job, which for example may be
another set of tapes to back up to if the primary tapes are not available, or a
different directory or system if file system full occurs. Whichever you choose,
a backup should always be successful. Also, you can use Recovery Options to
send messages to the operations staff on the proper execution of a recovery job.

The Interactive option is for NT systems in your TWS environment. This option is
used if the scheduled job requires manual intervention.

Opening the Default Plan Lists group presents a list for each TWS object type
(Figure 3-12 on page 39). Double-click any of the lists, and the JSC opens an
Object List View pane for all object instances associated with that list type. You
can also create your own groups and filtered lists, which can be used to control
the object instances presented in your Object List View panes.

38 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Figure 3-12 Plan lists

Double-click an object list view under Default Plan Lists to display an Object List
View pane for the associated object type. Click the in the upper-right corner of
the Object List View or select Console → Detach Task from the JSC menu bar
to detach the pane as a separate window. Figure 3-13 shows a detached All
Scheduled Jobs list.

Figure 3-13 Scheduled jobs in Tivoli Workload Scheduler

 Chapter 3. Case study: TSM Extended Agent 39

The Object List View pane information about TWS scheduling objects in the
current plan and well as modify some of the object attributes To access a specific
object in an Object List View pane, right-click the object and choose an action.

Double-click the respective object instance list for an object type to display the
corresponding information, as summarized here:

Workstations Displays status of each TWS system, including information
about its connectivity with the master, the run number, the
node name, and other information. The exact information
can be accessed from the CLI through the conman
showcpus command and associated qualifiers.

Domains Displays the domains, the associated domain manager,
and its parent.

Job Streams Displays all job streams and their status, priority, start
times, and dependencies.

Jobs Displays all jobs and their status, priority, start times, and
dependencies.

Resources Displays resources and their associated workstations.
Resources can be used when two or more jobs require the
use of the same resource, such as a set of tapes (the tape
is the resource). When one job is finished utilizing the one
set of tapes or a resource, TWS releases the resource and
the next job commences.

Prompts Displays the prompt’s description and its associated
workstation, job stream, and job.

Files Displays the files with their associated workstations, job
streams, and jobs.

All of these features can be used to complement any Tivoli product, especially
TSM. Each feature is discussed in more detail in Chapter 4, “Sample scenarios”
on page 43.

You can see the status of the scheduled jobs by double-clicking the All
Scheduled Jobs plan list. This shows whether the job was successful, abended,
or failed. It also can show whether the job is ready and when it will start,
according to start time or dependency columns, which can include resources,
files, and other jobs and schedules.

If a job fails or abends, you can see the reason why it was unsuccessful by
right-clicking on the job (Figure 3-14 on page 41), which opens a menu of options
for viewing information about the job or taking action on the job.

40 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Figure 3-14 Right-click to see the status of the job

Click Browse Job Log in the context menu to read the log associated with that
job. (located in the twshome/stdlist/MM.DD.YYYY directory). For more about
various other options, refer to the IBM Tivoli Workload Scheduler 8.2 Planning
and Installation Guide, SC32-1273. Figure 3-15 shows a sample stdlist output.

Figure 3-15 Status of the job

The stdlist header contains the job name, its associated schedule and CPU
names, as well as the logon name and the script location. As shown, it also
displays the process ID, and the date and time of the job execution.

 Chapter 3. Case study: TSM Extended Agent 41

The body of the stdlist contains the steps executed for the job, whether
successful or unsuccessful. The information contained depends solely on its
script and the information to standard out (stdout). You can print this output.

3.3 Summary
In this chapter we described the following TSM functions that can be scheduled
with the Tivoli Workload Scheduler:

� Back up database: To back up a TSM database to sequential access
volumes.

� Back up storage pool: To back up primary storage pool files to a copy storage
pool.

� Reclamation: To reclaim a volume, based on the percentage of reclaimable
space on a volume.

� Migration: To copy files to a library when a threshold is reached on the disk.

� Back up device configuration: To back up the device class, library, and drive
definitions.

� Back up volume history: To back up sequential volume history information to
one or more files.

� Expire inventory: To manually start inventory expiration processing.

� Restore database: To restore a database or volume to its most current state.

The information in this chapter is especially useful if you are not familiar with
TSM scheduling operations.

42 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Chapter 4. Sample scenarios

This chapter address several scenarios when utilizing Tivoli Workload Scheduler
with the Tivoli Storage Manager product sets.

We demonstrate how to schedule TSM functions in TWS. Primarily, we create
jobs and job streams in TWS to handle such functions. We also address
dependency options and display jobs and job streams output.

This chapter has the following sections:

� “TSM Extended Agent solution components” on page 44

� “Tivoli Storage Manager command execution” on page 45

� “When to use the TSM Extended Agent” on page 46

� “TSM Extended Agent installation” on page 46

� “Creating job definitions” on page 48

� “Description of the scenarios” on page 54

� “Summary” on page 78

4

© Copyright IBM Corp. 2005. All rights reserved. 43

4.1 TSM Extended Agent solution components
The TSM Extended Agent solution uses operational components such as:

� Tivoli Workload Scheduler master (master domain manager)

Contains the TWS scheduling database and manages the TWS current plan.

� Tivoli Workload Scheduler domain manager

Enables distribution of dependency resolution and such in the TWS topology.

� Tivoli Workload Scheduler Fault-tolerant Agent

Hosts the TSM Extended Agent (XA) and is responsible for such tasks as
triggering jobs on schedule. Note that any domain manager or the master
domain manager could also be used to host a TWS extended agent.

� TSM Extended Agent

Provides an enhanced TWS job command interface for executing TSM
commands on a TSM server.

� Tivoli Storage Manager server

Executes TSM administration commands and schedules execution of
commands on TSM clients.

� Tivoli Storage Manager client

Executes TSM commands and non-TSM batch files as directed by the TSM
scheduler on the TSM server.

Figure 4-1 shows the relationships between these components.

Figure 4-1 TSM Extended Agent components

Network

TWS MasterTWS Domain
Manager

TSM Server

Windows/UNIX
Server

TWS Fault-Tolerant
Agent

TWS Extended
Agent for TSM

TSM Client

TWS Job

TWS Job

TWS Job

TSM Job

44 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

4.2 Tivoli Storage Manager command execution
This section walks you through the process of a TSM job executing through the
TSM Extended Agent. Figure 4-2 on page 46 provides a view of the components
involved with job execution and how they interact with each other.

1. The TWS Fault-tolerant Agent hosting the TSM Extended Agent determines
that all dependencies have been met for the TWS extended agent job, so the
job is released for execution (the extended agent method script is called).

2. The TWS extended agent method script executes, parsing the command to
be executed by TSM and calling TSM to execute the command.

3. ADMIN commands are executed directly by the TSM server that the TSM
Extended Agent is installed on.

4. CLIENT commands are scheduled via the TSM scheduler, either directly by
the method script via the Define Schedule or Define Association
commands, or indirectly by the TSM Define ClientAction command (this
causes TSM to schedule the execution of the CLIENT command with the
TSM scheduler). After the command has been scheduled with or by TSM
scheduler, the following actions are performed:

a. The TSM scheduler contacts the TSM client Acceptor service on the TSM
client to start the Task Scheduler service.

b. When the Task Scheduler service is up and running, the execution of the
scheduled command starts. Note that the TSM scheduler reports that the
schedule is in pending state until execution of the command is started.

c. When command execution has completed, the TSM client passes back
the result (return code) from the command (TSM client action or Windows
batch file).

d. If the Client command was executed via the TSM Define ClientAction
command, the result is returned to the XA script that has been waiting.
Otherwise the XA has been polling the TSM server for event status and
will exit the polling loop when TSM returns a status of Completed or
Failed, or the polling count reaches the time-out limit. By default, the
polling count is 0, indicating “poll forever” (no time-out).

5. The result of the job is stored on the extended agent host workstation, and the
job log is available via the Job Scheduling Console (JSC).

 Chapter 4. Sample scenarios 45

Figure 4-2 Tivoli Storage Manager command execution

4.3 When to use the TSM Extended Agent
Use the TSM Extended Agent to schedule the execution of TSM commands on a
TSM server or TSM client. The TSM Extended Agent is particularly useful for:

� Scheduling batch files to run before or after TSM commands. (Use TWS job
dependencies.)

� Scheduling TSM commands that have to be run in a specific order. (Use TWS
job dependencies to specify the job order).

� Limiting the number of TSM backups, and so on, that TWS can run at a time.
(Use TWS special resources to limit this.)

� Scheduling TSM backups on a new TSM client.

� Scheduling backups on multiple TSM clients using a single job definition.

4.4 TSM Extended Agent installation
1. Install a TWS Fault-tolerant Agent on the TSM server. Refer to the IBM Tivoli

Workload Scheduler 8.2 Planning and Installation Guide, SC32-1273 for
detailed instructions for installing a Fault-tolerant Agent.

2. Copy the TSM Extended Agent method script tsmxagent and the supporting
script PARMS into the methods directory of the TWS Fault-tolerant Agent.

3. On the TWS Fault-tolerant Agent, create a UNIX user ID (referred to as uid) to
execute TWS jobs using the TSM Extended Agent. This user ID must be
assigned the primary group of tivoli and the password must be set.

4. On the TWS Fault-tolerant Agent, execute:

chown <tws_uid>:tivoli tsmxagent PARMS

Change the owner of the TWS XA for TSM and PARMS scripts to the tws_uid
that owns the TWS instance (twsuser) and the group tivoli.

T W S M a s t e r T W S D o m a i n
M a n a g e rT W S C o n s o l e

T W S S e r v e rT W S S e r v e r
T W S J o b

S c h e d u l i n g
C o n s o le (J S C)

T S M S e r v e r
W i n d o w s

/ U N I X
S e r v e r

T W S F a u l t - T o l e r a n t
A g e n t

T W S E x t e n d e d
A g e n t f o r T S M (X A)

T S M C l i e n t

T S M
S c h e d u l e r

X A c a l l s t h e
T S M S e r v e r

S c h e d u l e r

T W S J o b
c a l l s t h e X A

T W S j o b
d e f i n i t i o n

p a s s e d t o F T A

T S M S c h e d u l e r c a l l s
t h e T S M C l i e n t o r a

l o c a l e x e c u t a b l e / s c r i p

D e f i n e T W S J o b T W S j o b d e f i n i t i o n
p a s s e d t o T W S

D o m a i n M a n a g e r

TWS Console TWS Master
TWS Domain

Manager TSM Server
Windows/UNIX

Server

TWS Job Scheduling
Console (JSC) TWS server

TWS Extended Agent for
TSM (XA)

TSM Scheduler

TWS Fault-tolerant Agent

TWS job definition
passed to FTA

TWS job calls
the XA

TWS server TSM client

XA calls the TSM
server scheduler

TWS job definition passed
to TWS domain manager

Define TWS job
 TSM scheduler calls the

TSM client or a local
executable/script

46 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

5. On the TWS Fault-tolerant Agent, secure the scripts by executing:

chmod 750 script_name PARMS

6. On the TWS Fault-tolerant Agent, update the TWS Security file to authorize
uid to use the TWS parms utility:

a. Log on as tws_uid.

b. Run dumpsec > Security.conf

c. Edit Security.conf to add uid to the CPU=@+LOGON=tws_uid,root,...
statement

d. Run makesec Security.conf

7. On the TWS Fault-tolerant Agent, set the TSM admin user ID that will be used
by the extended agent. Setting the admin user ID can be accomplished in one
of two ways. If you need to change the default TSM admin user ID used by the
tsmxagent, change the USERID=tsm_uid statement so that tsm_uid is the
TSM user ID you want to be the extended agent default. An option for
overriding the default tsmxagent USERID is to create a tsmxagent.opts file in
the home directory of the UNIX user ID you specify in your TWS job definition.
This file must contain an entry that looks like:

tsmAdmin tsm_uid

tsm_uid is the TSM user ID you want the TSM Extended Agent to use to
execute TSM commands. Be sure to run chmod 600 tsmxagent.opts to
secure this file.

8. Set a password for each TSM admin user ID you plan to use: Log on as
maestro_uid and execute methods/PARMS tsm_uid password for each TSM
admin user ID that will be used with the TSM Extended Agent.

9. Use the TWS Job Scheduling Console (JSC) to create a workstation instance
for the TSM Extended Agent. When you have created the TWS extended
agent workstation definition, Jnextday has run at least once, and the hosting
TWS Fault-tolerant Agent is linked, you can schedule TSM jobs.

 Chapter 4. Sample scenarios 47

4.5 Creating job definitions
To create a TSM Extended Agent job definition using the JSC, click Extended
Agent Task in the Action list pane and fill in the Name, Workstation, and Login
fields. Click the Task tab and fill in the Command field (Figure 4-3).

Figure 4-3 Job Properties Task tab

4.5.1 Tivoli Storage Manager client command strings
Example 4-1 shows the syntax that is used to define TSM client jobs. Using the
CLIENT keyword and the listed options, you can build TSM Extended Agent jobs
that will execute on a TSM client.

Example 4-1 Tivoli Storage Manager client command string

CLIENT -a <action> -d <policy domain> -n <TSM node name> [-p value] [-s <value>
[-t <value>] [-- <TSM options>]

-a <action> Tivoli Storage Manager Define Schedule action (see Tivoli
Storage Manager Administrators Reference)

-d <policy domain> Tivoli Storage Manager Policy Domain
-p <polling interval>Time to wait before the next status poll
-n <TSM node name> Name of the Tivoli Storage Manager client to execute the
script on
-s <script path\\name>The script to exec when the "-a command" is specified.
Use '\\'

instead of '\'. Due to script name parsing, avoid using "
-" in the

48 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

script path\name.
-t <timeout count> Number of polling intervals before timing out. Defaults to
0 = Poll

Forever
-w Execute the client command synchronously Commands will not

time-out so the "-p" & "-t" options are ignored.
-- <TSM options> Any Tivoli Storage Manager options you need to add to
the Tivoli

Storage Manager Define Schedule command to be executed. If
you use the "--" option it MUST be the LAST option in the

job
command string. When multiple values are required for a

Tivoli
Storage Manager option, enclose the values in escaped

double
quotes. e.g. \"<values>\"

Example 4-2 Command string to execute a windows BAT file asynchronously

CLIENT -a command -d CLXP_TEST_DM -p 30 -s C:\\Program
Files\\Tivoli\\TSM\\baclient\\SCRIPTS\\tsm_rc_0.bat -n CBUEHLER1

Example 4-3 Command string to execute a UNIX script asynchronously

CLIENT -a command -d CLXP_TEST_DM -w -s /home/maestro/script_name -n CBUEHLER1

Example 4-4 Command string for incremental backup with options

CLIENT -a incremental -d CLXP_TEST_DM -p 600 -n CBUEHLER1 --
OPTIONS=\"-nojournal -optfile=dsm_SQLLOG.opt\"

4.5.2 Tivoli Storage Manager Admin command strings
To execute administration commands on a TSM server, use the following syntax
to generate the command strings for TSM Extended Agent jobs:

ADMIN Tivoli Storage Manager Admin command with options

When entering a double quote (") in a TSM Admin command, be sure to precede
it with a backslash (\") because the JSC uses double quotes as input delimiters.
Some TSM administration commands require the WAIT=YES option; otherwise
they will schedule an action and immediately return an exit status of 0. This will
result in the associated TWS job going to the success state prior to the execution
of a TSM administration command.

 Chapter 4. Sample scenarios 49

Example 4-5 Command string to create a backup

ADMIN generate backupset cbuehler2 bkpset dev=clxp_test_tape ret=10 wait=yes

4.5.3 Scheduling jobs using the workstation class
Creating multiple job definitions and a job stream to back up each server that
uses the TSM Extended Agent for backup can lead to major maintenance
overhead in an environment of any significant size. To address this, the TSM
Extended Agent has been updated to override the -n TSM_NODE_NAME
parameter based on the workstation name. This enables schedules to be created
using the TWS workstation class feature that executes a job stream against each
workstation in the workstation class definition. This means that a single job
stream and set of job definitions can support any number of systems that have
identical backup requirements. To use this new feature of the TSM Extended
Agent, follow these instructions:

1. Define extended agent workstation definitions.

Define an extended agent workstation for each system you will be running
backups on. The workstation name must begin with XA_ and end with
_<TSM_NODE_NAME>. For example, an XA workstation definition for
CBUEHLER9 could be XA_CBUEHLER9 or XA_WIN_CBUEHLER9.

2. Create a TWS workstation class.

Create a TWS workstation class that includes each system you will be
running a common set of backup jobs against using a single job stream. This
can be done via the TWS Job Scheduling Console.

3. Create the TSM Extended Agent job definitions.

Define the jobs you will use to back up the systems (Figure 4-4 on page 51),
specifying Workstation Class Command as the Task Type and the workstation
class created in “Define extended agent workstation definitions.” on page 50.

Important: When scheduling TSM commands that start before midnight and
end after midnight, use the -w client or wait=yes option to avoid status polling
problems related to the TSM scheduler cleaning up old schedules at midnight.

Note: You can automate this with scripting and the TWS composer interface.

Note: You can automate this with scripting and the TWS composer interface.

50 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Figure 4-4 Create the TSM Extended Agent job definitions

Note that the -n BOGUS01 parameter specified in the Command field of the
Task tab will be overridden by the <TSM_NODE_NAME> part of the XA
workstation name, as shown in Figure 4-5 and Figure 4-6 on page 52.

Figure 4-5 Task definition: part one

 Chapter 4. Sample scenarios 51

Figure 4-6 Task definition (continued from Fig 4-5)

4. Create the job stream.

Create a job stream using the workstation class name in the Workstation field
as in Figure 4-7.

Figure 4-7 Create the job stream

52 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

5. Add and link your Workstation Class Command jobs as in Figure 4-8.

Figure 4-8 Add and link your jobs

Monitoring workstation class job streams
When you submit a workstation class job stream, it generates a job stream
instance for each workstation defined as part of the workstation class.

For example, if you submit a workstation class job stream with an alias of J001,
an instance of the job stream will be created for the XA_W1_CBUEHLER9
workstation and another for workstation XA_W2_CBUEHLER9.

Monitoring workstation class jobs
Each workstation class job stream instance is comprised of a set of job
instances. The dependency chains for these jobs are resolved by workstation. For
example, this means that the TSMXA_WDL_1 job running on
XA_W1_CBUEHLER9 must complete before the TSMXA_WDL_2 job will run on
XA_W1_CBUEHLER9.

Furthermore, the execution of the TSMXA_WDL_2 job on XA_W2_CBUEHLER9
does not depend on the execution of TSMXA_WDL_1 on XA_W1_CBUEHLER9.
In the event that a job in a dependency chain fails, it can be rerun or manually set
to SUCC state without affecting the execution of the backup job stream on other
workstation-class workstations.

 Chapter 4. Sample scenarios 53

4.6 Description of the scenarios
These scenarios involve information about backup databases, backup storage
pools, migration, and various other typical scenarios.

4.6.1 Database backup
Our first scenario is a database backup. You can specify the type of backup that
your company requires. This depends on the necessary data’s level of availability
for recovery purposes, as well as addressing service level agreements (SLAs)
between your company and third-party vendors.

We start with scheduling a TSM function in TWS:

1. Execute the Tivoli Workload Scheduler JSC and expand New Job Definition
in the Action list (Figure 4-9).

Figure 4-9 JSC Action list: New Job Definition

54 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

2. Expand the Maestro scheduling engine and click Extended Agent Task
(Figure 4-10).

Figure 4-10 JSC: new Extended Agent Task

3. This opens the job’s Properties window (Figure 4-11).

Figure 4-11 New job properties: General tab

 Chapter 4. Sample scenarios 55

4. Click the ellipsis (...) next to the workstation field to open the Find Workstation
window (Figure 4-12). Select the workstation definition in which the new job
will reside. In TWS, a workstation must be identified with the job or where the
backup script resides.

Figure 4-12 Select the workstation

5. Complete the necessary fields in the Properties window (Figure 4-13). Login
refers the user ID that will execute the job (script or command). Recovery
Options is an important field to consider. When a job does not complete
successfully (or the status is ABEND), the entered Recovery Job is executed.

Figure 4-13 Job properties window for database backup: General tab

56 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

6. Designate the script name or the command, ensuring that the path is included
or the .jobmanrc is present in the user’s directory (Figure 4-14). The path can
also be a parameter if necessary. See IBM Tivoli Workload Scheduler 8.2
Planning and Installation Guide, GC32-1273, and IBM Tivoli Workload
Scheduler Job Scheduling Console 1.3 User’s Guide, GC32-1257 for more
about the Parameter object.

Figure 4-14 Job properties window for database backup: Task tab

7. When you are finished specifying job properties, click OK to close the window.

 Chapter 4. Sample scenarios 57

8. As jobs are entered in the database, utilizing the JSC Groups and Lists
feature (Figure 4-15) can help you search for a specific job.

Figure 4-15 List of jobs, including BACKUP_DATABASE

When a job is defined, it must be entered into an existing or new job stream. The
following steps assist you with job stream definitions:

1. For a new job stream, expand New Job Stream in the Action list and click the
scheduling engine name associated with the destination TWS database
(Figure 4-16).

Figure 4-16 Selecting schedules to add a new schedule

58 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

2. Creating a new job stream first presents a job stream Properties window
(Figure 4-17). Specify the name of the job stream and the hosting workstation
name. If you are not sure of the appropriate workstation, click ... to the right of
the Workstation Name field. Naming convention methodology is highly
recommended for easy monitoring and ad hoc scheduling.You can also
specify the job stream’s priority, limit, options, and free days.

Figure 4-17 Job Stream Properties for new BACKUPDB stream

 Chapter 4. Sample scenarios 59

3. On the Time Restrictions tab (Figure 4-18), enter the schedule’s start time,
latest acceptable start time, and termination deadline time, and any required
delays. Note that Days offset cannot be used at the job and job stream level. If
your site has the Time Zone feature enabled, you can also specify a time zone
that applies to all three times; otherwise the time zone of the job stream
workstation is used.

You also can select the action you want TWS to take if the job stream does
not start by the specified time. The default action is Suppress the execution of
the job stream and any jobs in the stream. You can also select the Continue
option, which takes no action but makes entries in the Tivoli Workload
Scheduler log and event files. The third option is to cancel the stream, which
releases any downstream jobs and job streams from dependency on the
BACKUPDB job stream or any jobs in the stream.

Figure 4-18 BACKUPDB Job Stream Time Restrictions

60 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

4. Click the Resources tab (Figure 4-19). Resources represent physical or
logical scheduling resources that can be used as dependencies for jobs and
job streams. The resource may be an available device (a tape or tape device).
If other job streams or jobs are dependent on the same device, you may use
the resource option to run jobs or job streams in a particular sequence.

To add a resource dependency, click the green plus (+) sign in the upper-right
corner of the Resources pane. This adds a new row to the table, where you
can select the resource name, the resource workstation, and the quantity
required by the job or job stream.

Figure 4-19 Adding job stream resource dependencies

5. On the Files tab (Figure 4-20), you do not have to enter a file as a
dependency for our scenario, so leave this blank. However, adding a file
dependency works the same way as adding a resource dependency.

Figure 4-20 Adding job stream file dependencies

 Chapter 4. Sample scenarios 61

6. On the Prompts tab (Figure 4-21), you do not have to enter a prompt as a
dependency for our scenario, so leave this blank. However, adding a prompt
dependency works the same way as adding a file or resource dependency.

Figure 4-21 Adding job stream prompt dependencies

7. After the correct information is entered for the job stream properties, click OK
to display the graphical view of the Job Stream Editor. In this view, you can
add jobs to the job stream, define dependencies between the jobs, and define
dependencies between jobs in the current stream and external jobs and job
streams.

To add a job, click the add icon indicated by the arrow in Figure 4-22.

Figure 4-22 Job Stream Editor view for BACKUPDB

62 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

8. This opens a job properties window (Figure 4-23) that resembles the job
streams Properties window, with General, Time Restrictions, Resources,
Files, and Prompts tabs for specifying the properties of jobs in this stream. In
this scenario, we simply specify the job’s name and workstation name.

Figure 4-23 Job Properties window for BACKUP_DATABASE

9. Click OK to complete the process of adding the job to the job stream. The job
is represented by an icon in the graphical view of the Job Stream Editor
(Figure 4-24).

Figure 4-24 Job Stream Editor graphical view of the BACKUPDB stream

 Chapter 4. Sample scenarios 63

10.Selecting the days of the week, month, or year that the job stream will execute
requires the definition of a run cycle. Run cycles are made up of one or more
rules that either include or exclude dates. The rules are defined using the Run
Cycle view of the Job Stream Editor. To select the run cycle view, click the
Run Cycle icon identified by the arrow in Figure 4-25.

Figure 4-25 Selecting the Run Cycle view

For this scenario, we add one inclusive rule to the run cycle definition for the
BACKUPDB stream. The rule selects the stream for execution every day of the
year. To add the rule, click the Weekly Run Cycle icon in the run cycle view, as
shown in Figure 4-26.

Figure 4-26 Adding a Weekly Run Cycle rule

64 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

11.We specify an Inclusive rule, so that the days specified by the rule cause TWS
to select the stream (Figure 4-27).

Figure 4-27 Specifying an Inclusive Run Cycle rule

 Chapter 4. Sample scenarios 65

12. Select the Everyday rule and click OK (Figure 4-28). This action causes
TWS to execute the job stream seven days a week.

Figure 4-28 Specifying an Everyday run cycle rule

66 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

13.Figure 4-29 shows that the dates selected by the combination of all inclusive
and exclusive rules are highlighted in light blue. Select File → Save, then
File → Close to save the job stream and close the Job Stream Editor.

Figure 4-29 Dates selected by Run Cycle rule

14.Your job stream (Figure 4-30) is now complete and ready for execution after a
Jnextday run, as it will be part of your production Symphony file. To submit the
job stream immediately, use the Submit entry in the Action list or right-click
your job stream in a job stream database list.

Figure 4-30 New job stream listed in All Job Streams list

 Chapter 4. Sample scenarios 67

9. When a Jnextday is completed, choose the appropriate Plan List and display
the production environment. Depending on security, this may not be possible.
Ask your TWS administrator for your security options.

Choose the All Scheduled Job Streams plan list to display the job stream
name, state of the stream state, its priority, the schedule’s duration, the
number of jobs in that schedule, and the schedule’s limit and other
information about the streams. Use the scroll bar under the listed jobs to see
additional information about the job streams.

In our example, the BACKUPDB job stream is shown in the Successful state
(internal status of SUCC), with a priority of 10, number of jobs, and other
pertinent information (Figure 4-31).

Figure 4-31 BACKUPDB Job Stream listing

10.Choose the All Scheduled Jobs plan list to display the job name, job
number, job workstation, job stream, job stream workstation, status, internal

 Important: You will not be able to display the newly created schedule or job
until a Jnextday run. The Jnextday script processes the following steps:

1. Run schedulr to select the appropriate schedules for the new day.

2. Run compiler to create an interim Production Control file.

3. Run reptr to print the preproduction reports.

4. Stop TWS processing.

5. Run stageman to carry forward uncompleted schedules, log the old
Production Control file, and install the new file.

6. Start TWS processing for the new day.

7. Run reptr to print the post-production reports from the most recent log file.

8. Run logman to log job statistics from the most recent log file.

68 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

state, and other information about the job. Use the scroll bar under the listed
jobs to see additional information about the job streams.

The example display in Figure 4-32 shows the BACKUP_DATABASE job’s
status is Successful (internal status of SUCC), the job number was 1036, the
job is in the BACKUPDB stream, and other relevant information.

Figure 4-32 BACKUP_DATABASE job listing

11.Right-click the BACKUP_DATABASE job and select Browse Job Log to
retrieve the log file that was created during job execution (Figure 4-33).

Figure 4-33 Checking the status of a job

 Chapter 4. Sample scenarios 69

12.The job log (also known in TWS as the stdlist) displays the header
information: logon user, the job ID (or process ID), and the start date and time
(Figure 4-34). The body of the stdlist contains the standard output of the job
and its exit code, which determine the status of the job.

Figure 4-34 Job log for BACKUPDB

Follow the same steps when scheduling any job or job stream. The
dependencies are the only differences.

Here is a summary of the steps for scheduling a database-backup job in TWS. To
back up a database, you must define a copy of a storage pool on your server.
Eliminating this copy results in errors when scheduling in TWS. To define a copy
of a storage pool on your server, refer to the relevant user guide for your server
platform.

1. From the TWS Job Scheduling Console, click the appropriate job type from
the appropriate Scheduling Engine associated with the New Job Definition
entry in the Action list.

70 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

2. Following the example in Figure 4-35, select the corresponding workstation
and enter the job name (following your naming conventions).

3. Enter the logon ID. This is the user ID that will execute the job.

4. Enter the Recovery Option. If the job does not complete successfully, you
must choose an action. The Stop option will wait for your manual next step.
The Continue option would not be used in this scenario. The Rerun option
enables the job to be executed again without manual intervention.

Figure 4-35 Job Definition General tab for storage pool backup

 Chapter 4. Sample scenarios 71

5. On the Task tab (Figure 4-36), enter the command or script (including path).
The path can be entered in a parameter, in the .jobmanrc file, or in the
command or script field.

6. Specify return code mapping if the command or script does not follow the
convention of 0 for success and any other value is an abnormal end. Click OK
to save changes and close the Properties window.

Figure 4-36 Job Definition Task tab for storage pool backup

7. To define a new job stream for this job, open the New Job Stream entry in the
Action list and select the appropriate scheduling engine name.

8. Choose the associated workstation name and enter the job stream name.

9. Define a run cycle to specify when to execute the job stream.

10.Define the job stream dependencies (if any).

11.Select File → Save, then File → Close.

You now have a job and job stream in the TWS database to back up a storage
pool. There are several ways to execute your job stream.

a. If you have added this job stream and job in a production environment, you
can only submit this job stream in an ad hoc fashion. Submit the job or job
stream from the Submit entry in the Action list, choosing Job Stream or
Job, choosing the appropriate Scheduling Engine name, and answering
the necessary prompt.

72 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

b. If the job stream and job were created in a test environment, you can rerun
the Jnextday script from the command line. This enables the job stream
and job to run in the Symphony file (or TWS production day). The job
stream will execute immediately (if no time was entered) or it will execute
on the given time.

To view the state of the job and job streams:

12.Select a job or job stream plan list from the from the Work with engines pane.
You can select the default All Scheduled Jobs and All Scheduled Job
Streams lists or define your own lists to display only the jobs and job streams
of interest.

13.Use the Explorer view associated with the Job Stream lists or Job lists to view
the state of the job.

14.To display the standard output or result of the job, right-click the mouse button
and choose Browse Job Log.

 Note: A new run number is generated when a Jnextday process is
executed and all executing jobs will appear as CF (carryforward job
streams.)

 Chapter 4. Sample scenarios 73

4.6.2 Backup device configuration
You can use this command to back up information about device class definitions,
library definitions, and drive definitions. If you do not have a library installed on
your server, you can also back up information about your disk.

To schedule backup device configuration using TWS, you must define a new job
stream and job. Follow the steps described in 4.6.1, “Database backup” on
page 54 to prepare your job and job stream.

Figure 4-37 shows the Job Definition Task tab for backup device configuration.

Figure 4-37 Job Definition Task tab for backup device configuration

15.After you create the new schedule and job to back up a device configuration,
test your newly created schedule and job as in 4.6.1, “Database backup” on
page 54.

4.6.3 Backup volume history
You can use this command to back up sequential volumes to one or more files.

To define a new job and a new schedule for this event, follow the steps described
in 4.6.1, “Database backup” on page 54.

Figure 4-38 on page 75 shows the Job Definition Task tab for backup volume
history.

74 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Figure 4-38 Job Definition Task tab for backup volume history

4.6.4 Clean volume history
Use this command to delete volume history file records that are no longer
needed (that is, obsolete databases). To define a new job and a new schedule for
this event, follow the steps described in 4.6.1, “Database backup” on page 54.
Figure 4-39 shows the Job Definition Task tab for clean volume history.

Figure 4-39 Job Definition Task tab for clean volume history

 Chapter 4. Sample scenarios 75

4.6.5 Expiration process
This inventory expiration process removes client backup and archive file copies
from server storage based on policy specified in the backup and archive copy
groups of the management classes to which the files are bound.

To define a new job and a new schedule for this event, follow the steps described
in 4.6.1, “Database backup” on page 54.

Figure 4-40 shows the Job Definition Task tab for the expiration process.

Figure 4-40 Job Definition Task tab for the expiration process

4.6.6 Reclamation process
Reclamation makes the fragmented space on volumes usable again by moving
any remaining active files from one volume to another volume, thus making the
original volume available for reuse.

To define a new job and a new schedule for this event, follow the steps described
in 4.6.1, “Database backup” on page 54.

Figure 4-41 on page 77 shows the Job Definition Task tab for the reclamation
process.

76 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Figure 4-41 Job Definition Task tab for the reclamation process

4.6.7 Migration process
You can use a primary storage pool as the destination for backup files, archive
files, or files migrated from client nodes. To define a new job and a new schedule
for this event, follow the steps described in 4.6.1, “Database backup” on page 54.
Figure 4-42 shows the Job Definition Task tab for the migration process.

Figure 4-42 Job Definition Task tab for the migration process

 Chapter 4. Sample scenarios 77

4.6.8 Restore
You can restore files, a single database, databases, or volume history files. For
more information, see the Tivoli Storage Manager for AIX Administrator’s
Reference, GC32-0768. To define a new job and a new schedule for this event,
follow the steps described in 4.6.1, “Database backup” on page 54.

Figure 4-43 shows the Job Definition Task tab for restore.

Figure 4-43 Job Definition Task tab for backupset restore

4.7 Summary
In this chapter, we investigated the following TSM functions that can be
scheduled by using TWS extended agent for TSM.

� Backup device configuration
� Backup volume history
� Clean volume history
� Database backup
� Expiration process
� Migration process
� Reclamation process
� Restore

Instead of using the native TSM scheduler, we used our Tivoli Workload
Scheduler custom extended agent for TSM to schedule these tasks through
TWS. This way we were able to use TWS extended scheduling capabilities.

78 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Appendix A. TSM Extended Agent source
code

This appendix provides the Tivoli Storage Manager Extended Agent code, the
Parms script, and tsmxagent.opts file. Note that these are provided on an as-is
basis and can be downloaded from the ITSO Web site. For download
instructions, refer to Appendix B, “Additional material” on page 101.

A

Important: The TSM Extended Agent script runs in Korn Shell environment.
We have tested the script on AIX, but it should run with little or no modification
on any platform that supports Korn Shell.

© Copyright IBM Corp. 2005. All rights reserved. 79

Parms script code
Example A-1 is the Parms script to be used with TSM Extended Agent.

Example A-1 Parms script

#!/bin/sh
if ["$2"]
then

encrypt=`echo $2 | tr
0123456789AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz
HtGuFvEwDxCyBzAaZ0bY1cX2dW3eV4fU5gT6hS7iR8jQ9kPlOmNnMoLpKqJrIs`

parms -c $1 $encrypt
else

value=`parms $1 | tr
HtGuFvEwDxCyBzAaZ0bY1cX2dW3eV4fU5gT6hS7iR8jQ9kPlOmNnMoLpKqJrIs
0123456789AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz`

echo "$value"
fi

TSM Extended Agent code
Example A-2 shows the TSM Extended Agent code.

Example A-2 TSM Extended Agent source code

#!/bin/ksh
set +u
#--
This method script executes commands on the Tivoli Storage Manager server
for administrative and client backup purposes
#
#***********
Job scheduling syntax:
#***********
#
Create jobs for this x-agent with the following commands in the
"script name" field on the job definition:
############

ADMIN <TSM Admin Command with options>
#
When entering a double quote " in a TSM Admin Command, be sure to preceed it
with a \ (ex. \"). This is required because the TWS JSC uses double quotes
as input delimiters.

80 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

WARNING!: some TSM Admin commands require the WAIT=YES option or they will
schedule an action and immediately return a return code of 0.

#***********
ADMIN Example 1. Create a backup
#***********
ADMIN generate backupset cbuehler2 bkpset dev=TSM_test_tape ret=10 wait=yes
#***********
############

CLIENT -a <action> -d <policy domain> -n <TSM node name>
[-p value] [-s <value> [-t <value>] [-- <TSM options>]

#
-a <action>TSM Define Schedule action (see TSM Admin Ref)
-d <policy domain>TSM Policy Domain
-p <polling interval>Time to wait before the next status poll
-n <TSM node name>Name of the TSM client to execute the script on
-s <script path\\name>The script to exec when the "-a command" is
specified. Use '\\' instead of '\'
WARNING!: due to script name parsing, avoid
using " -" in the script path\name.
-t <timeout count>Number of polls to complete before timing out.
Defaults to 0 = Poll Forever
-w Execute the client command synchronously
Commands will not timeout so the "-p" & "-t"
options are ignored.
-- <TSM options> Any TSM options you need to add to the
TSM Define Schedule command to be executed.
Note: when multiple values are required for
a TSM option, enclose the values in
escaped double quotes.
ex. \"<values>\"
#
-a, -d, & -n options are REQUIRED!
#
WARNING!: If you use the "--" option it MUST be the LAST option in
the job command string.
#***********
CLIENT Example 1a. Execute a script asynchronously (Windows)
#***********
CLIENT -a command -d TSM_TEST_DM -p 30 -s C:\\Program
Files\\Tivoli\\TSM\\SCRIPTS\\tsm_rc_0.bat -n cbuehler1
#
This will run a script on a TSM client via the TSM scheduler.
Note the requirement for using 2 backslashes instead of single backslashes
in the script path\name. This is necessary due to variable substitution

 Appendix A. TSM Extended Agent source code 81

by TWS and the TWS extended agent (this script).
#***********
CLIENT Example 1b. Execute a script asynchronously (Unix)
#***********
CLIENT -a command -d TSM_TEST_DM -w -s /home/maestro/script_name -n cbuehler1
#***********
CLIENT Example 2. Incremental backup with TSM options
#***********
CLIENT -a incremental -d TSM_TEST_DM -p 600 -n cbuehler1 --
OPTIONS=\"-nojournal -optfile=SQLLOG.opt\"
#
This will perform an incremental backup of the client with the "-nojournal"
and "-optfile" options set. Please note that the "s are escaped (\"). This
is required because the TWS code that processes the job command field uses
"s as delimiters.
#***********
Installation:
> Install a TWS FTA on the AIX TSM Server
> Use the TWS `dumpsec` & `makesec` commands to add the AIX uid that
XA jobs will be executed with to the TWS security file.
> Copy this script into the TWS FTA 'methods' on the AIX TSM Server and
set the file permissions to 750.
> Copy the "PARMS" script to the 'methods' directory as well.
> Using the JSC, create a "New Workstation" definition for the XA on the
TSM Server.
#
Notes:
1. When creating the "New Workstation", be certain to specify
OS = Other
Workstation Type = Extended Agent
2. Until Jnextday is run on the TWS server, the XA is not usable in a plan
#
> Verify that the default value for "USERID" in this script is correct.
This variable contains the TSM userid that is used to execute TSM cmds.
> In the TWS FTA 'methods' directory on the AIX TSM Server, execute the TWS
`PARMS <TSM_userid> <TSM_password>` command to set the TSM password used
for each TSM uid that will be used to schedule TSM commands via the XA
> Test the installation by scheduling a TSM job to run on the XA
#***********
Implementation Notes:
> The TWS `parms` command is used to store & retrieve the encrypted TSM pw.
> The 'parameters' file in the TWS install directory is used to store
the encrypted TSM password.
> The 'parameters.key' file is required to decrypt the values stored using
the TWS `parms` utility.
> TWS interprets all return codes returned by fail_job & abend_job as
modulus 256 values. The correct job completion state (ABEND) is displayed
as expected and the job log text indicates the actual return code.
Examples...

82 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

job rc of 256 = 0 in TWS job summary info
job rc of 257 = 1 in TWS job summary info
job rc of 999 = 231 in TWS job summary info
> You can override the TSM admin userid specified in the USERID variable
by creating a file called "tsmxagent.opts" in the home directory of the
UNIX uid used to execute the job. This file should contain the
following...
tsmAdmin <TSM_Admin_userid>
#
where <TSM_Admin_userid> is the TSM Admin userid you want put in USERID
#***********
Change Control:

#--

Set DEBUG flag to a value other than 0 to activate debug messages
DEBUG=0

############
Initialize Variables
############

PATH=$PATH:/bin:/usr/bin:/sbin:/usr/sbin:/etc/:/posix:/usr/ucb:/usr/bsd
export PATH

Initialize some of the variables.
SCHEDULE_NAME=""
FORMATTED_SCHED_DATE=""
UNIVERSAL_DATE=""
NODE_NAME=""
JOB_NAME=""
JOB_ID=""
STREAM_LOGON=""
MAESTRO_CPU=""
MAESTRO_HOST=""
MAESTRO_MASTER=""
PORT_NUMBER=""
TEST_OPTIONS=""
CURRENT_RUN_NUMBER=""
REQUIRED_RUN_NUMBER=""
STDLIST=""
TASK=""
PARENT="NO"
XARG1=""
XARG2=""
XARG3=""
TMPJOBNAME=""
JOBSTATUS=""
DEVCLASS=""

 Appendix A. TSM Extended Agent source code 83

BACKUPTYPE=""
FILENAMES=""
TODATE=""
DURATION=""
RET9=""
DSMADMC="/usr/bin/dsmadmc"

Set the standard banner message.
BANNER='=== TWS Extended Agent for TSM (v1.00) ==='

Set the standard usage message.
USAGE="Invalid Usage. See Tivoli Workload Scheduler Users Guide for correct
usage ."

Set the TSM Client action options usage message
CLIENT_USAGE=": option is NOT valid. Valid options are...\n\t-a <action>\n\t-d
<policy domain>\n\t-p <status polling interval (seconds)>\n\t-t <timeout count
(number of polls)>\n\t-s <script path\\\\\\\\name>\n\t-- <TSM options>"

Set the default number of seconds between TSM schedule status checks
CHECKFREQ=60

Set the default number of TSM Schedule status checks before
the job times out and the schedule is deleted
Note: 0 = poll forever
JOBTIMEOUT=0

Set default TSM userid
USERID="tsmid1"

Set the XA path and program names
if [-z "$UNISON_EXEC_PATH"]
 then
 PROG_NAME=`basename $0`
 EXEC_PATH=`dirname $0`
 else
 PROG_NAME=`basename $UNISON_EXEC_PATH`
 EXEC_PATH=`dirname $UNISON_EXEC_PATH`
fi

Set the maestro home directory path
MAE_HOME=`dirname $EXEC_PATH`

Add maestro home to PATH.
PATH=$MAE_HOME/bin:$MAE_HOME:$PATH
export PATH

Set the path to the PARMS encryption script
PARMS=$EXEC_PATH"/PARMS"

84 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

########
Define Functions
########

echoerr()
Function to display error messages.
{
 TIME=`date +%H:%M`
 echo "${PROG_NAME}:$TIME/" "$@" >&2

 # Display the error message in the job log
 echo "ERROR: $@"
}

print_version()
{
 echo "$BANNER"
}

command_exist()
{

 if type "$@" 2>&1 | grep -i "not *found" > /dev/null 2>&1
 then
 echoerr "Command $@ not found."
 return 1
 else
 return 0
 fi
}

Check_File()
Check for existance of a file on the extended agent machine.
{
 [-z "$TEST_OPTIONS"] && TEST_OPTIONS="-f"
 test $TEST_OPTIONS "$FILE_NAME"
 exit $?
}

fail_job()
{

If an attempt has not already been made to delete the schedule...
if [[-z $del_attempted]]
then

Indicate that an attempt is being made to delete the schedule
del_attempted=1

Attempt to delete the schedule

 Appendix A. TSM Extended Agent source code 85

tsm_del_schedule
fi

send_Message "CJ FAIL"
echoerr ">>> Job FAIL <<<"
exit $1

}

abend_job()
{

If an attempt has not already been made to delete the schedule...
if [[-z $del_attempted]]
then

Indicate that an attempt is being made to delete the schedule
del_attempted=1

Attempt to delete the schedule
tsm_del_schedule

fi

send_Message "CJ ABEND"
echoerr ">>> Job ABEND <<<"
exit $1

}

succeed_job()
{

If an attempt has not already been made to delete the schedule...
if [[-z $del_attempted]]
then

Indicate that an attempt is being made to delete the schedule
del_attempted=1

Attempt to delete the schedule
tsm_del_schedule

fi

send_Message "JS"
echo ">>> Job SUCC <<<"
exit 0

}

Run dsmserv admin command
{

Save the TSM Admin command options
TSM_OPTIONS=$*

86 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Remove all \"s
TSM_OPTIONS=$(echo $TSM_OPTIONS | sed 's/\\"/\"/g')

Create command to define the schedule to run the user script
cmd="$DSMADMC -id=$USERID -password=$PASSWORD $TSM_OPTIONS"

Execute the TSM Admin command
echo "==> Executing \"TSM Admin\" command..."
tsm_exec_cmd

The job completed successfully
succeed_job

}

tsm_client_command()
run TSM Client action via tsm scheduler
{

 # Parse the script options
 while [$# -gt 0]
 do
 case $1 in
 -a)
 OPT_ARG="$1"
 shift
 # Set TSM Define Schedule Client action
 TSM_ACTION=$1
 shift
 ;;
 -d)
 OPT_ARG="$1"
 shift
 # Set TSM policy domain
 TSM_POLICY_DOMAIN=$1
 shift
 ;;
 -n)
 OPT_ARG="$1"
 shift
 # Set TSM target client node name
 TSM_NODE_NAME=$1
 shift
 ;;
 -p)
 OPT_ARG="$1"
 shift
 # Set TSM status polling interval in seconds

 Appendix A. TSM Extended Agent source code 87

 CHECKFREQ=$1
 shift
 ;;
 -s)
 OPT_ARG="$1"

 # Set the user script path/name
 while [$# -gt 0]

 do
 shift

 # If a "-" is encountered, the script path/name is complete
 # and the next option needs to be processed
 [[`echo "$1" | cut -c 1` = "-"]] && break

 SCRIPT=$SCRIPT" $1"
 done

 # Remove the space at the beginning of the script path/name
 SCRIPT=`echo $SCRIPT | cut -c 1-`

 # Add the "objects=" TSM Define Schedule option tag and
 # enclose the script string in both single & double quotes
 SCRIPT="objects='\""$SCRIPT"\"'"

 ;;
 -t)
 OPT_ARG="$1"
 shift
 # Set TSM command timeout count (# of polling intervals)
 JOBTIMEOUT=$1
 shift
 ;;
 -w)
 OPT_ARG="$1"
 shift
 # Set the flag indicating that the "define clientaction" command

 # should be used to wait for the command to execute synchronously.
 TSM_WAIT=1
 ;;
 --)

 # Skip the "--" option tag
 shift

 # Any remaining options should be TSM Options because this option
 # is required to be last by the CLIENT command syntax implemented

 # in this XA (script)
 TSM_OPTIONS=$*

 TSM_OPTIONS=$(echo $TSM_OPTIONS | sed 's/\\//g')

 # There are no more options to process so exit the option loop

88 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

 break
 ;;
 *)
 OPT_ARG="$1"
 echoerr "\"$OPT_ARG\"$CLIENT_USAGE"
 shift

 # Indicate that a syntax error has been encountered so the XA
 # will exit without executing a command.

 syntax_error=1
 ;;
 esac
 done

 # Ensure that required parameters are specified...
 if [[-z $TSM_ACTION]]
 then
 echoerr "\"-a\" <action> is a required parameter."
 syntax_error=1
 fi
 if [[-z $TSM_POLICY_DOMAIN]]
 then
 echoerr "\"-d\" <policy domain> is a required parameter."
 syntax_error=1
 fi

If the workstation name starts with "xa_" then override the TSM node name
 if [[-n `echo $MAESTRO_CPU | grep -i "^xa_"`]]
 then
 TSM_NODE_NAME=${MAESTRO_CPU##*_}
 echo "==> Overriding -n <TSM_NODE_NAME> with $TSM_NODE_NAME based on
CPU=$MAESTRO_CPU"
 fi

 if [[-z $TSM_NODE_NAME]]
 then
 echoerr "\"-n\" <TSM node name> is a required parameter."
 syntax_error=1
 fi
 if [["$TSM_ACTION" = @(command|COMMAND) && -z $SCRIPT]]
 then
 echoerr "\"-s\" <script path\\\\\\\\name> is a required parameter when
the \"-a command\" action is specified."
 syntax_error=1
 fi
 if [$syntax_error]
 then
 fail_job 1
 fi

 Appendix A. TSM Extended Agent source code 89

 # Tell TWS to indicate that the job is in the "EXEC" state
 send_Message "CJ EXEC"

 # If the "execute the client command synchronously" flag is set...
 if [[$TSM_WAIT = 1]]
 then
 # Execute the command synchronously
 tsm_clientaction
 else
 # Schedule the command for asynchronous execution
 tsm_client_schedule
 fi

}

tsm_client_schedule()
{

 # Set the temporary job name for the client script job
 TSM_SCHEDULE_NAME="TWSJOB_"$JOB_ID

 # Create command to define the schedule to run the user script
 cmd="$DSMADMC -id=$USERID -password=$PASSWORD define schedule
$TSM_POLICY_DOMAIN $TSM_SCHEDULE_NAME action=$TSM_ACTION startdate=today
starttime=now dayofweek=any expiration=TODAY $SCRIPT $TSM_OPTIONS"

 # Execute the "define schedule" command
 echo "==> Executing \"define schedule\" command..."
 tsm_exec_cmd

 # Create the command to associate the user script with the schedule
 cmd="$DSMADMC -id=$USERID -password=$PASSWORD define association
$TSM_POLICY_DOMAIN $TSM_SCHEDULE_NAME $TSM_NODE_NAME"

 # Execute the "associate schedule" command
 echo "==> Executing \"associate schedule\" command..."
 tsm_exec_cmd

 # Poll for the schedule status
 tsm_poll_schedule

}

tsm_clientaction()
{

Create command to define the schedule to run the user script

90 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

cmd="$DSMADMC -id=$USERID -password=$PASSWORD define clientaction
$TSM_NODE_NAME domain=$TSM_POLICY_DOMAIN action=$TSM_ACTION $SCRIPT
$TSM_OPTIONS wait=yes"

Execute the "define schedule" command
echo "==> Executing \"define clientaction\" command..."
tsm_exec_cmd

The job completed successfully
succeed_job

}

tsm_del_schedule()
Delete a TSM Schedule
{

If a TSM Schedule was created...
if [[-n $TSM_SCHEDULE_NAME]]
then

Create command to delete the TSM schedule created by this XA
 cmd="$DSMADMC -id=$USERID -password=$PASSWORD delete schedule
$TSM_POLICY_DOMAIN $TSM_SCHEDULE_NAME"

echo "==> Executing \"delete schedule\" command..."
tsm_exec_cmd

fi

}

tsm_exec_cmd()
Execute a TSM command and handle any errors
{

Execute the TSM command
result=`$cmd`

 # Remove the carriage returns from the TSM command results
 rc=$(echo $result | sed 's/\n//g')

Parse the TSM command return code
rc=${rc##*Highest return code was }
rc=${rc%.}

If the DEBUG flag is not 0...
if [[$DEBUG != 0]]
then

 Appendix A. TSM Extended Agent source code 91

echo "DEBUG: TSM command/result...\n$cmd\n\n$result"
fi

If the TSM command failed...
if [[! $rc -eq 0]]
then

echoerr "TSM command FAILED...\n$result"

fail_job $rc
fi

}

tsm_poll_schedule()
Poll the TSM schedule for status
{

 # Poll TSM for the schedule status
 if [[$JOBTIMEOUT -eq 0]]
 then
 echo "==> Begin TSM schedule wait/poll cycle... Wait=$CHECKFREQ seconds
& Timeout='poll forever'"
 else
 echo "==> Begin TSM schedule wait/poll cycle... Wait=$CHECKFREQ seconds
& Timeout=$JOBTIMEOUT polls"
 fi

 while [[$JOBTIMEOUT -eq 0 || $COUNTER -lt $JOBTIMEOUT]]
 do
 sleep $CHECKFREQ

 let COUNTER=$COUNTER+1

 # Create the command to query the schedule status
 cmd="$DSMADMC -id=$USERID -password=$PASSWORD query event
$TSM_POLICY_DOMAIN $TSM_SCHEDULE_NAME Nodes=$TSM_NODE_NAME"
 tsm_exec_cmd

 # Remove the carriage returns from the "query event" results
 result=$(echo $result | sed 's/\n//g')

 # Remove the text from the beginning thru the last "- "
 JOBSTATUS=${result##*- }

 # Remove the text from the end thru " ANS8002I"
 JOBSTATUS=${JOBSTATUS%% ANS8002I*}

 # Display schedule status summary
 echo "--> TSM schedule status... $JOBSTATUS"

92 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

 # Get the status of the TSM schedule
 STATUS=${JOBSTATUS##* }

 # If the TSM schedule has completed...
 if [["$STATUS" != @(Future|Pending|Restarted|Started)]]
 then

 # Create command to query for detailed schedule status
 cmd="$DSMADMC -id=$USERID -password=$PASSWORD query event
$TSM_POLICY_DOMAIN $TSM_SCHEDULE_NAME Nodes=$TSM_NODE_NAME Format=Detailed"
 echo "==> Executing \"query event Format=Detailed\" command..."
 tsm_exec_cmd

 # Remove the carriage returns from the "query event" results
 JOBSTATUS=$(echo $result | sed 's/\n//g')

 # Remove the text from the end thru " ANS8002"
 JOBSTATUS=${JOBSTATUS%% ANS8002I*}

 # Get the action exit code (rc) from the detailed TSM status
 action_rc=${JOBSTATUS##* }

 # If the action exit code (rc) is greater than 0...
 if [[$action_rc -gt 0]]
 then
 echoerr ">>> TSM Client action exited with rc=$action_rc <<<"

 fail_job $action_rc
 fi

 # The job completed successfully
 succeed_job
 fi
 done

 echoerr ">>> Job TIMEOUT <<<"
 fail_job 1
}

Launch_Job()
Launch the job
{
 if [$# -lt 2]; then
 echoerr "Invalid job definition. Too few arguments!"
 fail_job 1
 fi
 [-z "$SCRIPT_NAME"] && exit 1

 Appendix A. TSM Extended Agent source code 93

 touch "$STDLIST"
 TMP_PATH=/tmp

 case $1 in
 ADMIN|admin)
 # Skip over the "ADMIN|admin" value in the parms
 shift

 tsm_admin_command $@
 ;;
 CLIENT|client)
 # Skip over the "CLIENT|client" value in the parms
 shift

 tsm_client_command $@
 ;;
 TST|tst)

Execute tst()
shift

tst $@
;;

 *)
 echoerr "Invalid job definition. Must be ADMIN or CLIENT!"
 fail_job 1
 esac

 exit 0
}

Check_Connection()
#Check connection
{
 exit 0
}

Manage_Job()
{
 exit 1
}

send_Message()
{
 echo "%" "$@"
 return 0
}

tst() to test "displaying intermediate status"
tst()

94 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

{

echo "Executing test using the TST() function of the TWS XA for TSM\n"

echo "Set WAIT state..."
echo "%CJ WAIT"
sleep 10

echo "Set DONE state..."
echo "%CJ DONE"
sleep 10

echo "Set PEND state..."
echo "%CJ PEND"
sleep 10

echo "Set FAIL state..."
echo "%CJ FAIL"
sleep 10
exit 0

}

#######
Begin Main Script
#######

Display the TWS XA version banner
echo $BANNER

The name of the TSM administrator logon is in the tsmxagent.opts file
opts_file=`pwd`"/${PROG_NAME}.opts"
if [-f $opts_file]
 then
 USERID=`awk '$1 ~ /tsmAdmin/ { print $2 }' $opts_file`
 echo "==> Setting TSM admin userid from $opts_file"
 else
 echo "==> Using default TSM admin userid."
fi

Get the TSM password
if command_exist parms
then
 if command_exist $PARMS
 then
 PASSWORD=`$PARMS $USERID`

 Appendix A. TSM Extended Agent source code 95

 else
 echoerr "Encryption routine was not found. Attempting to use unencrypted
password."
 PASSWORD=`parms $USERID`
 fi

 if [[-n "$PASSWORD"]]
 then
 echo "==> Password set for TSM userid <$USERID>."
 else
 echoerr "Execute \`$PARMS $USERID <password>\` to set password for TSM
userid <$USERID>.\nIf you are not using encrypted passwords, execute \`parms -c
$USERID <password>\`\n*** Note: If setting the password does not work add the
<userid>, specified in the string \"= USER: <userid>\" at the top of this job
log, to the TWS Security file. ***"
 exit 3
 fi
else
 echoerr "Could not find the TWS parms utility."
 exit 3
fi

Parse the arguments passed to the XA by TWS
while [$# -gt 0]
do
 OPT="$1"
 ["`echo %$OPT | cut -c2`" != "-"] && break
 shift

 case $OPT in
 -c)
 OPT_ARG="$1"
 shift
 MAESTRO_CPU=`echo "$OPT_ARG" | cut -d',' -f1`
 MAESTRO_HOST=`echo "$OPT_ARG" | cut -d',' -f2`
 MAESTRO_MASTER=`echo "$OPT_ARG" | cut -d',' -f3`
 ;;
 -d)
 OPT_ARG="$1"
 shift
 FORMATTED_SCHED_DATE=`echo "$OPT_ARG" | cut -d',' -f1`
 UNIVERSAL_DATE=`echo "$OPT_ARG" | cut -d',' -f2`
 ;;
 -j)
 OPT_ARG="$1"
 shift
 JOB_NAME=`echo "$OPT_ARG" | cut -d',' -f1`
 JOB_ID=`echo "$OPT_ARG" | cut -d',' -f2`
 ;;

96 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

 -l)
 OPT_ARG="$1"
 shift
 STREAM_LOGON="$OPT_ARG"
 ;;
 -n)
 OPT_ARG="$1"
 shift
 NODE_NAME="$OPT_ARG"
 ;;
 -o)
 OPT_ARG="$1"
 shift
 STDLIST="$OPT_ARG"
 ;;
 -p)
 OPT_ARG="$1"
 shift
 PORT_NUMBER="$OPT_ARG"
 ;;
 -q)
 OPT_ARG="$1"
 shift
 TEST_OPTIONS="$OPT_ARG"
 ;;
 -r)
 OPT_ARG="$1"
 shift
 CURRENT_RUN_NUMBER=`echo "$OPT_ARG" | cut -d',' -f1`
 REQUIRED_RUN_NUMBER=`echo "$OPT_ARG" | cut -d',' -f2`
 ;;
 -s)
 OPT_ARG="$1"
 shift
 SCHEDULE_NAME="$OPT_ARG"
 ;;
 -t)
 OPT_ARG="$1"
 shift
 TASK="$OPT_ARG"
 ;;
 -V)
 print_version
 exit 0
 ;;
 --)
 break
 ;;
 *)

 Appendix A. TSM Extended Agent source code 97

 echoerr "$USAGE"
 exit 1
 ;;
 esac
done

There could be arguments that were not parsed above so
save them...
REMAINING_ARGS="$*"

if [! "$TASK" = "CC"]
then
 if ["$#" = "0"] || [-z "$TASK"]
 then
 echoerr "$USAGE"
 exit 1
 fi
fi

Take action based on the value of the "-t <TASK>" passed by TWS
case $TASK in
 CF)
 FILE_NAME="$REMAINING_ARGS"
 Check_File
 ;;
 MJ)
 JOB_PID=`echo "$REMAINING_ARGS" | cut -d" " -f1`
 STDLIST=`echo "$REMAINING_ARGS" | cut -d" " -f2`
 Manage_Job
 ;;
 LJ)
 SCRIPT_NAME="$REMAINING_ARGS"
 send_Message "CJ WAIT"
 Launch_Job $SCRIPT_NAME
 ;;
 CC)
 Check_Connection
 ;;
 *)
 echoerr $USAGE
 send_Message "UT $USAGE"
 exit 2
 ;;
esac

If the script "fall's thru" to here, something went wrong

98 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

so exit with an error
echoerr "Unexpected error. Contact TWS XA for TSM owner."
abend_job 1

Sample tsmxagent.opts file
Example A-3 shows the sample tsmxagent.opts file.

Example A-3 Sample tsmzagent.opts file

tsmAdmin tsmid2

 Appendix A. TSM Extended Agent source code 99

100 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246696

Alternatively, you can go to the IBM Redbooks Web site at:

http://www.redbooks.ibm.com

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246696.

Using the Web material
The additional Web material that accompanies this redbook includes this file:

File name Description
SG246696.zip Zipped TSM Extended Agent code

B

© Copyright IBM Corp. 2005. All rights reserved. 101

ftp://www.redbooks.ibm.com/redbooks/SG246696
http://www.redbooks.ibm.com

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 30 MB minimum
Operating system: Windows/Linux/AIX

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material Zip file into this folder.

102 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering this publication, see How to get IBM Redbooks.

� IBM Tivoli Workload Scheduler Version 8.2: New Features and Best
Practices, SG24-6628

Other publications
These publications are also relevant as further information sources:

� IBM Tivoli Storage Manager for AIX Administrator's Reference V5.3,
GC32-0769

� IBM Tivoli Workload Scheduler 8.2 Planning and Installation Guide,
SC32-1273

� IBM Tivoli Workload Scheduler 8.2 Reference Guide, SC32-1274

� IBM Tivoli Workload Scheduler Job Scheduling Console 1.3 User’s Guide,
GC32-1257

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

http://www.redbooks.ibm.com

Help from IBM
IBM Support and downloads

ibm.com/support

© Copyright IBM Corp. 2005. All rights reserved. 103

http://www.redbooks.ibm.com
http://www.ibm.com/support/
http://www.ibm.com/support/

IBM Global Services

ibm.com/services

104 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage

http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
.jobmanrc 57

A
abended 56
access 26
access method 5
application programming interface 2
archival storage 9
archive 8–9

B
backup command 24–25
backup master 3
backup volumes 29
batch job execution 3
batchman process 5

C
CA7 7
centralized database 3
CF task 15
client backups 1
command line interface 2, 14
commit 32

D
data protection 8
databases 8
dependencies 2
dependency chains 53
device class definitions 28
device directory 29
disaster recovery 8
DOCOMMAND 7
domain manager 4
drive definitions 28
dump volumes 29
duration 31

© Copyright IBM Corp. 2005. All rights reserved.
E
e-mail 8
export volumes 29
extended agent 4, 10, 14

access method 10
access method interface 16
API 2
example 18
executing the method 21
host 10
interface 5
interface between TWS 5
jobname 17
killing a job 21
logical workstation definition 10
messages 20
method command line syntax 16
method options file 15
method troubleshooting 21
nodename 17
password 9
portnumber 17
processing 6
qualifier 17
referenced 10
sample options file 15
sample scenarios 43–78
segregation of applications 5
special login information 15
stdlist 17
troubleshooting 21
user 17
workstation definition 14

external job 6
external system 14

F
fast recovery 8
Fault-tolerant Agent 4
foreign platforms 4
Full Status 3

 105

G
groupware 8

H
hierarchical space management 9
highmig 27

J
Java 2
JES2 4
JES3 4
job execution 2
job ID 7
job number 7
Job Scheduling Console 2–3, 14
job stream execution 2
jobman.exe 5
jobmanrc 5
jobmon.exe 5
JSC 35, 55

See Job Scheduling Console

L
LAN-free backup 8
launch a job 6
library definitions 28
line 14
LJ task 15
local dependencies 4
logical workstation 14
lowmig 27

M
manage a job 6
management hub 4
master domain manager 3
maxsize 27
method.opts 5
methods directory 5
migcontinue 27
migdelay 27
migprocess 27
migration 8
MJ task 15
MVS JES2 4
MVS JES3 4

N
Needs Resources 61
network agent 4
NEXTSTGPOOL 27
node 14

O
offset 60
OPENS dependency 6
Opens Files field 61–62
operator prompts 2
Oracle Applications 4, 7

P
PeopleSoft 4, 7–8
physical workstation 14
PID 18
poll forever 45
pooltype 26
port definition 2, 7
production run number 7

R
reclaim 25
Recovery Options 56
Redbooks Web site 103

Contact us ix
remote console 3
Remote Function Call 5
repeater 3
Resolve Dependencies 3
retrieval 8
roll over 2
run cycle 2

S
SAN 8
SAP R/3 4

Batch 7–8
schedule name 7
scheduling API 4
scheduling protocol 4
scratch 24
SCRIPTNAME 7
Security.conf 47
service level agreement 54
shell script 5

106 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

skipdirs 31
SLA

See service level agreement
space management 8
standard agent 4
stdout 42
Storage Area Networks

See SAN
storage resource management 9
subfile backup 8
Symphony file 73
synchronize job 16

T
tape sharing 8
tcpaddr 14
Tivoli Job Scheduling Services 2
Tivoli Management Framework 2
Tivoli Storage Management 8
Tivoli Storage Manager 11

See TSM
Tivoli TWS Connector 2
Tivoli Workload Scheduler for Applications 7
troubleshooting 2
TSM 8, 11

Administrative Client Interface 9
archive process 9
backup storage pool 25
backup volume history 42
client backups 10
data protection 8
database 24, 30
disaster recovery 8
Extended Agent benefits 9
incremental backup 8
migration 26
overview 8
reclamation 25
restore database 31, 42
retrieval process 9
scheduling facility 1
scratch volumes 30
task 9

TSM scenarios
backup device configuration 74
backup volume history 74
clean volume history 75
database backup 54

expiration process 76
migration process 77
reclamation process 76
restore 78

TSM scheduler 50
tsmxagent 9
tsmxagent.opts 9
TWS 3

architecture 4
Backup Master 3
calendars 3
concepts 3
CPU 40
current run number 17
database 2
database files 4
default user 33
domain manager 3
extended agent 4
Fault-tolerant Agent 4
files 40
job streams 3
jobs 40
JSC client 3
master domain manager 3
methods directory 9
network 3
plan 2
production day 73
production plan 14
prompts 40
recovery options 38
resources 40
scaling 3
scheduling API 4
separate networks 4
Standard agent 4
task options 17
terminology 3
types of workstations 3
workstations 3

type 24

U
UNIX Local agent 7
UNIX Remote Shell agent 7
update command 25

 Index 107

V
virtual resources 2
vital record retention 9

W
wait 24, 31
wgetmethod 7

108 Implementing IBM Tivoli Workload Scheduler V 8.2 Extended Agent for IBM Tivoli Storage Manager

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Im
plem

enting IBM
 Tivoli W

orkload Scheduler V8.2 Extended Agent for IBM
 Tivoli Storage M

anager

®

SG24-6696-00 ISBN 0738491063

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Implementing IBM Tivoli
Workload Scheduler V8.2
Extended Agent for IBM Tivoli
Storage Manager
Insider’s guide to
Tivoli Workload
Scheduler extended
agents

Ready-to-use
solution for TSM and
TWS integration

TSM Extended Agent
code included

IBM Tivoli Workload Scheduler is a strategic, multiplatform
distributed scheduling product that provides high-volume,
complex scheduling capability. Although Tivoli Workload
Scheduler provides native support for many platforms and
applications, its robust scheduling capabilities can be
extended to cover additional platforms and applications by
writing an extended agent.

This IBM Redbook shows how to write a Tivoli Workload
Scheduler Version 8.2 extended agent to schedule jobs on
IBM Tivoli Storage Manager. With the extended agent, you can
schedule on platforms and applications for which Tivoli
Workload Scheduler has no native agent, as well as integrate
IBM Tivoli Storage Manager with Tivoli Workload Scheduler.
The Tivoli Workload Scheduler scheduling facility enables you
to assign dependencies among tasks scheduled through
Tivoli Storage Manager or to assign limits or priorities. By
extending Tivoli Storage Manager to schedule these Tivoli
Storage Manager tasks, you can take advantage of its
advanced scheduling capabilities.

This book will be essential for those who write a Tivoli
Workload Scheduler extended agent for any platform in
general, or use the extended agent provided in this book (TSM
Extended Agent) to schedule Tivoli Storage Manager tasks.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Tivoli Workload Scheduler overview
	1.1.1 Software configurations used for this redbook
	1.1.2 Tivoli Workload Scheduler concepts and terminology
	1.1.3 Tivoli Workload Scheduler architecture
	1.1.4 Extended agents

	1.2 Tivoli Storage Manager overview
	1.2.1 What are the benefits of a TSM Extended Agent?

	1.3 Summary

	Chapter 2. Extended agent functions
	2.1 Introduction
	2.2 Workstation definition
	2.3 Method options file
	2.4 Access method interface
	2.4.1 Method command line syntax
	2.4.2 Task options
	2.4.3 Example

	2.5 Method response messages
	2.6 Execution and troubleshooting
	2.6.1 Executing the method
	2.6.2 Killing a job
	2.6.3 Method troubleshooting

	2.7 Summary

	Chapter 3. Case study: TSM Extended Agent
	3.1 Tivoli Storage Manager operations
	3.2 Testing the TSM Extended Agent solution
	3.3 Summary

	Chapter 4. Sample scenarios
	4.1 TSM Extended Agent solution components
	4.2 Tivoli Storage Manager command execution
	4.3 When to use the TSM Extended Agent
	4.4 TSM Extended Agent installation
	4.5 Creating job definitions
	4.5.1 Tivoli Storage Manager client command strings
	4.5.2 Tivoli Storage Manager Admin command strings
	4.5.3 Scheduling jobs using the workstation class

	4.6 Description of the scenarios
	4.6.1 Database backup
	4.6.2 Backup device configuration
	4.6.3 Backup volume history
	4.6.4 Clean volume history
	4.6.5 Expiration process
	4.6.6 Reclamation process
	4.6.7 Migration process
	4.6.8 Restore

	4.7 Summary

	Appendix A. TSM Extended Agent source code
	Parms script code
	TSM Extended Agent code
	Sample tsmxagent.opts file

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

